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 Metacommunity theory, which has gained a central position in ecology, accounts for the role of migration in patterns 
of diversity among communities at diff erent scales. Community isolation has a main role in this theory, but is diffi  cult 
to estimate empirically, partly due to the taxon-dependent nature of dispersal. Landscapes could be perceived as either 
fragmented or connected for organisms with contrasting dispersal abilities. Indeed, the dispersal ability of a taxon, and 
the spatial scale at which eco-evolutionary processes shape local diversity, determine a taxon-dependent metacommunity 
network. In this paper, we introduce a methodology using graph theory to defi ne this taxon-dependent metacommunity 
network and then to estimate the isolation of local communities. We analyzed the relative importance of local conditions 
versus community isolation as determinants of community richness for 25 taxa inhabiting 18 temporary ponds. Although 
local factors have been the foci of most previous empirical and theoretical considerations, we demonstrate that the meta-
community network is an equally important contributor to local diversity. We also found that the relative eff ect of local 
conditions and the metacommunity network depend on body size and taxon abundance. Local diversity of larger species 
was more aff ected by patch isolation, while taxon abundances were associated with positive or negative eff ects of isolation. 
Our results provide empirical support for the proposed role of metacommunity networks as determinants of community 
diversity and show the taxon-dependent nature of these networks.   

 Local processes related to biotic interactions and environ-
mental conditions have been seen as the main determinants 
of community structure for more than half a century (Ricklefs 
and Schluter 1993). # e concept of communities as isolated 
entities has been replaced by a paradigm that emphasizes 
connections to a regional species pool as additional deter-
minants of community structure (MacArthur and Wilson 
1967, Ricklefs 1987, Weiher and Keddy 1999, Hubbell 
2001). More recently, the abstract concept of a regional 
species pool has been changed to an explicit consideration 
of the exchange of individuals between communities, which 
determines a metacommunity (Hubbell 2001, Holyoak 
et   al. 2005, Economo and Keitt 2010, Moritz et   al. 2013). 
Empirical evidence provides corroborative support for 
the important role of species exchanges in local diversity 
(Vanschoenwinkel et   al. 2007, Economo and Keitt 2010, 
Logue et   al. 2011), size structure (Castle et   al. 2011, Borthag-
aray et   al. 2012), species turnover (Losos and Ricklefs 2009, 
Carrara et   al. 2012), and the stability of populations (Huxel 
et   al. 2002, Holyoak et   al. 2005, Hoopes et   al. 2005). 
# e fl ow of individuals from a metacommunity to a local 
community may be regarded as a process that enhances 
local richness by preventing local extinction or allowing 

recolonization by a locally extinct species (MacArthur and 
Wilson 1967, Economo and Keitt 2008). However, large 
inputs of predators, diseases, or dominant competitors may 
also reduce recruitment, increase local extinctions, and reduce 
community diversity (Mouquet and Loreau 2003, Cadotte 
and Fukami 2005, Cadotte 2006). Although metacommu-
nity theory has rapidly become a cornerstone in ecological 
theory, there have been few empirical analyses of the relative 
roles of metacommunity and local processes (Driscoll and 
Lindenmayer 2009, Logue et   al. 2011). 

 Analysis of the relative roles of local versus metacom-
munity processes as determinants of local diversity has 
two shortcomings. First, the large variation among taxa in 
dispersal ability means that a fi xed distance between pairs of 
patches may be experienced as a weak or strong barrier to 
dispersal for diff erent taxa within the same species pool 
(Urban and Keitt 2001, Vanschoenwinkel et   al. 2008, Chase 
and Bengtsson 2010, Borthagaray et   al. 2012). # e interac-
tion between dispersal ability and landscape structure deter-
mine a taxa dependent landscape perception (Borthagaray 
et   al. 2014). Secondly, the structures of communities may 
diff er according their locations within landscapes even when 
local conditions (e.g. area, productivity or heterogeneity) are 
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similar among locations (Economo and Keitt 2008, 2010, 
Logue et   al. 2011, White and Rashleigh 2012). Graph the-
ory provides tools for advancing understanding of these two 
issues, estimating diff erent networks for species with diff erent 
dispersal abilities and providing several metrics for estimating 
community isolation (Fig. 1). Representing taxon-dependent 
metacommunity networks with graphs has been successfully 
used in ecology (Urban and Keitt 2001, Economo and Keitt 
2008, 2010, Carrara et   al 2012, Borthagaray et   al. 2012, 
2014). # is analysis provides general insights into the ways 
in which organisms with diff erent dispersal abilities experi-
ence a landscape (Fig. 1A). In this context, a metacommu-
nity network could be considered a set of local communities 
connected by dispersal paths (Fig. 1A; Economo and Keitt 
2010, Borthagaray et   al. 2014). Despite the recognition 
that landscape perception and the related metacommunity 
network are taxon-dependent, the means of identifying 
taxon-specifi c metacommunity networks is not evident. As 
a consequence, these networks have been typically identifi ed 
using graph theory methods, such as the minimum spanning 
tree (Urban and Keitt 2001) and the percolation distance 
(Rozenfeld et   al. 2008). # ese approaches provide robust 
estimations of metacommunity networks from a graph the-
ory perspective. However, these metacommunity networks 
may signifi cantly diff er from the landscape experienced by 
the organisms under consideration. Here we introduce a new 
method that estimates metacommunity networks using local 
trends in community structure. 

 Once a metacommunity network has been confi gured, 
graph theory provides several metrics for estimating 
the relative isolation of single patches within the net-
work (Fig. 1A). In an ecological context, centrality indices 
are inversely related with isolation of a local community 
(Economo and Keitt 2010). Centrality potentially refl ects 
the relative fl ow of individuals through a local patch, 
and then throughout the entire system (Estrada and Bodin 
2008, Jord á n et   al. 2008). Diff erent centrality metrics are 
available (Fig. 1A) that highlight the potential movement of 
individuals between neighboring patches (degree or eigenvec-
tor centrality), the entire metacommunity (closeness central-
ity), or the role of a patch connecting all other patches in the 
metacommunity (betweenness centrality). # e centrality of a 
community is not a fi xed attribute; it is sensitive to the scale 
of organism movement (Holt and Hoopes 2005). # e same 
patch may be isolated from the metacommunity for short-
distance dispersers, a central stepping-stone connecting the 
whole system for intermediate-distance dispersers, or part of 
a large set of local patches for long-distance dispersers. In this 
sense, several studies congruently indicate that, from whole 
metacommunity and local community perspectives, there is 
no single metacommunity network; the dispersal abilities of 
diff erent taxa will determine diff erent networks for members 
of a species pool inhabiting a given landscape (Keitt et   al. 
1997, Urban and Keitt 2001, Economo and Keitt 2008, 
2010). Based on the observed relationship between individ-
ual dispersal ability and the experimented metacommunity 
network, we postulate that 1) the metacommunity net-
work and community centrality change systematically with 
the dispersal ability of a taxa  –  local patch linkage distance 
(Fig. 1B); 2) the association between community central-
ity and local diversity changes systematically with the link-

age distance used to estimate the metacommunity network 
(Fig. 1C); 3) the local diversity – community centrality asso-
ciation will have an extreme value at the linkage distance 
congruent with the distance aff ecting organism fl ow and 
community diversity (Fig. 1C). # is metacommunity net-
work, which has a maximum correlation between local 
diversity and community isolation, could diff er from meta-
community networks estimated from graph theory methods 
such as minimum spanning tree and percolation distance. 

 Here, we empirically evaluate the interplay between the 
spatial structure of the metacommunity network and local 
diversity along an environmental gradient. To this end, we 
analyzed 18 ponds from a metacommunity of 52 tempo-
rary ponds embedded in a matrix of grasslands in Uruguay. 
In this landscape, we estimated metacommunity net-
works for 25 taxa based on the postulates of the previous 
paragraph (Fig. 1). As expected from metacommunity the-
ory, we detected a main role of isolation shaping community 
structure. In addition, body size and the abundance of the 
specifi c taxon determined the relative roles of local versus 
metacommunity processes.  

 Methods  

 Study site 

 We analyzed a metacommunity of 52 temporary ponds 
embedded in a matrix of grasslands in Uruguay (34 ° 25 ′ 47 ′  ′ S, 
53 ° 58 ′ 10 ′  ′ W; 5 – 8 m a.s.l.). Ponds varied locally in area, 
volume, heterogeneity, productivity, and degrees of isola-
tion within the metacommunity (Arim et   al. 2010, 2011, 
Pi ñ eiro-Guerra et   al. 2014). During earlier months of 
2008, 52 of the ponds were water-fi lled, but only 18 
contained water in October 2008; the biological database 
assembled for the present study refers to these 18 ponds. 
We estimated the metacommunity network for all 52 ponds 
because every pond community has the potential to aff ect 
others through migration. Sampled individuals were classi-
fi ed at high taxonomic resolution, and unclassifi ed organ-
isms were assigned to morphospecies. Local diversity was 
estimated for each pond as the number of species in higher 
level taxa, usually at the ordinal level (with the exception 
of all plants and six groups of invertebrates that we classi-
fi ed at the level of class or phylum) (Table 1). Ponds were 
characterized by the following local conditions: primary 
productivity (photosynthetically active standing biomass), 
vegetation richness depth, volume, heterogeneity (number 
of small  ‘ islands ’  per meter of major diameter), the coeffi  -
cient of variation for depth, and shape (ratio between major 
and minor diameters of the pond). We used quadratic terms 
for depth and volume when fi rst examinations of the data 
revealed non-linear trends (Neter et   al. 1996).   

 Pond isolation in the metacommunity 
network structure 

 Identifying a metacommunity network structure for each 
of the 25 taxa in the metacommunity was a major chal-
lenge for our analysis. Our premise was that for each taxon a 
network structure of ecological relevance would be one that 
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Figure 1. Schematic representation of the use of graph theory for metacommunity analysis: (A) estimating landscape perceptions for 
diff erent taxa, and local community centrality; (B) changes in the metacommunity network with the scale at which the mechanisms shaping 
local communities operates; (C) detection of the scale at which ecological processes operate, and the associated metacommunity network; 
and (D) an empirical example using odonates.  
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  Table 1. Generalized linear models constrained to two variables and ranked according to the Akaike (AIC) criterion for the 25 taxa in 
the metacommunity. In each case, only the best model is presented. Variables included in the fi nal model and with signifi cant coeffi cients 
are highlighted in grey. Positive and negative effects of local variables are indicated by  !  and  – , respectively. Negative effects of centrality 
indices are indicated with a black box. The linkage distances in meters (spatial scale), selected to estimate the metacommunity network for 
each index, are presented within the indices columns. Abbreviations are as follows:  P  i : vegetation;  S  veg  i : vegetation richness;  D  i : depth;  CV  i : 
coeffi cient of variation in depth ; V  i : volume;  H  i : heterogeneity;  PV  i : productivity volume ; Sh  i : shape;  DC : degree centrality;  EV  eigenvector 
centrality;  BC : betweenness centrality;  CC : closeness centrality. (See the text for details on the meaning and calculation of each variable).  

Pond’s local conditions Centrality Index

P i S Veg  i D i CV i V i H i PV i Sh i V i2 D i 2 DC i EV i BC i CC i p-value R 2 

Coleoptera 0 0  0  0  ! 0 0 0 0  " 0 NA 0 NA 0.000 0.522
Hemiptera 0 0  0  0  0 0 0 0 0 0 1061 0 890 0 0.008 0.371
Diptera 0 0  !  0  0 0 0 0 0 0 0 1552 NA 0 0.004 0.429
Pulmonata  ! 0  0  0  0 0 0 0 0 0 0 0 NA 0 0.069 0.244
Cyclopoida 0 0  0  0  0 0 0  ! 0 0 0 0 0 706 0.035 0.352
Hymenoptera 0 0  0  0  0 0 0 0 0 0 NA NA 1786 540 0.001 0.545
Trichoptera 0 0  0  0  0 0 0  " 0 0 0 807 0 0 0.059 0.409
Araneae 0 0  0  0  ! 0 0 0  " 0 NA NA 0 0 0.000 0.589

 Order Ephemeroptera 0 0  0  0  0  " 0 0 0 0 0 1650 0 0 0.080 0.401
Odonata 0 0  !  0  0 0 0 0 0  " 0 0 0 0 0.001 0.685
Architaenioglossa 0 0  0  0  0  ! 0 0 0 0 0 1792 0 0 0.026 0.317
Collembola 0 0  0  0  0  !  ! 0 0 0 0 0 0 0 0.009 0.489
Decapoda 0 0  0  0  0 0 0 0 0  " 0 1408 NA 0 0.064 0.222
Calanoida 0 0  0  0  0 0 0  " 0 0 657  0 0 0 0.000 0.784
Diplostraca 0 0  0  0  0 0 0  " 0 0 NA NA NA NA 0.078 0.124
Lepidoptera 0  !  0  0  0 0 0  " 0 0 NA NA NA NA 0.011 0.473
Anura 0 0  0  0  0 0 0 0 0 0 812 0 0 0 0.041 0.393
Cyprinodontiformes 0  !  0  0  0 0 0 0 0 0 1140  0 NA 0 0.158 0.503
Hirudinea * 0 0  0  0  0 0 0 0 0 0 NA 1396 573 NA 0.001 0.478
Oligochaeta * 0 0  0  0  0 0 0 0 0  " 624  0 0 0 0.014 0.605
 Class  Acari *  ! 0  0  0  0 0 0 0 0  " NA NA NA NA 0.001 0.515
Ostracoda  !  "  0  0  0 0 0 0 0 0 NA NA 0 0 0.008 0.597
Bivalvia 0 0  0  !  ! 0 0 0 0 0 NA NA NA NA 0.025 0.388

 Phylurr Nematoda  ! 0  0  0  0 0 0 0 0  " 0 0 0 NA 0.001 0.561
Vascular plants 0 0  0  0  ! 0 0 0 0 0 0 0 1591 0 0.003 0.435

    *Hirudinea, Oligochaeta and Acari corresponds to subclasses.   

maximizes the (positive or negative) association between 
pond centrality and local diversity. To this end, we proceeded 
stepwise as follows: 1) we constructed a set of metacommu-
nity networks representing a gradient of dispersal ability 
(linkage distances), i.e. one network for each of the 400 dis-
tances considered; 2) we calculated pond centrality metrics 
for each network; 3) we calculated the association between 
pond centrality and local diversity in each metacommunity 
network; and 4) identifi ed linkage distance and the related 
metacommunity network using a maximum biodiversity-
metacommunity network association (Fig. 1C – 1D). Details 
of the four steps are presented in the Supplementary mate-
rial Appendix 1. After completing steps 1 – 4, we determined 
the metacommunity network that maximized the associa-
tion between centrality measures and local diversity for each 
taxon. We obtained four vectors of centrality, one for each 
of the centrality metrics we considered. # e four metrics of 
patch centrality were incorporated as potential explanatory 
variables in statistical models accounting for local diversity. 

 Occurrences of positive or negative associations between 
community centrality and diversity were analyzed by logistic 
regression. Trophic status (carnivore, herbivore, detritivore 
or fi lters feeder), biovolume and numerical abundance were 
treated as potential independent variables. # e fi nal statisti-
cal model, identifi ed using the best subset model selection, 

was limited to two independent variables, and was ranked 
according to the Akaike information criterion (AIC) for each 
one of the 25 taxa analysed. # e best model is the one with 
the lowest AIC (Hillborn and Mangel 1997). Diff erences 
greater than two units in AIC values between models are 
statistically signifi cant (Richards 2005). When models with 
diff erences smaller than two units were detected, we retained 
the simplest one. # e maximum of two independent vari-
ables was determined by the number of available observa-
tions (Neter et   al. 1996). Analyses were implemented by the 
bestglm package in R software (McLeod and Xu 2010).   

 Determinants of local diversity 

 # e relative importance of community isolation (centrality) 
and the local conditions in ponds (variables previously intro-
duced) on community species richness was analyzed with a 
generalized linear model (GLM) with the same procedure 
of previous analyses. When the species richness distribution 
was 0 – 1 or there were no more than 3 individuals per 
species, we selected a GLM with binomial or Poisson error 
distribution, but in other cases we used a Gaussian family. 
A best subset glm was implemented for each taxon. Finally, a 
logistic regression was used to evaluate associations between 
the presence of a metacommunity network eff ect and trophic 
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status (carnivore, herbivore, detritivore or fi lters feeder), 
biovolume and numerical abundance of the taxon. All 
models and statistical analysis were performed using R 
software ( # www.r-project.org/ $ ).    

 Results  

 Metacommunity networks 

 For most taxa, we identifi ed a metacommunity network that 
had the maximum absolute value of correlation between its 
centrality measures and local diversity (Fig. 2, Supplementary 
material Appendix 1 Fig. A1). # is outcome indicates the 
existence of a linkage distance that may refl ect the abilities 
of organisms to disperse between local communities. Among 
the 25 taxa considered, two of the orders (Lepidoptera and 

  Figure 2.     Estimated metacommunity networks for (A) killfi shes, (B) anurans, (C) odonates and (D) vascular plants. # e associations 
(Pearson correlation) between community diversity and local community centrality (degree and eigenvector) were calculated for 400 
linkage distances for each taxon. Gray dots represent associations that were statistically signifi cant at p    %    0.05. Fitted lines and breaking 
points were obtained from segmented regressions. A minimum in (A) and maxima in (B – D) are observable for both centrality indexes. # e 
third column of graphs shows the metacommunity networks associated with each taxon, which was calculated for linkage distances that 
maximize the association between centrality and diversity. # e results for the 25 taxa and the four indices of centrality are presented in the 
Supplementary material Appendix 1 Fig. A1.  

Diplostraca) and two of the classes (Acari and Bivalvia) had 
no associations between community centrality and diversity 
(Supplementary material Appendix 1 Fig. A1). In general, 
the centrality metrics that performed best were degree cen-
trality and eigenvector centrality; there was a clear agreement 
in the spatial scale identifi ed by these two metrics. Moreover, 
among taxa with signifi cant metacommunity eff ects, there 
was a maximum association at linkage distances of 500 – 700 
m or 1200 – 1500 m. Negative roles of community centrali-
ties on local diversity were signifi cantly associated with inter-
mediate to high abundances (Fig. 3).   

 Determinants of local diversity 

 In most taxa, local diversity was associated with community 
isolation (centrality) and local conditions in ponds, such 
as vegetation biomass, depth, volume and shape (Table 1). 
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  Figure 3.     Probability of the negative eff ect of community centrality 
on species richness as a function of taxon abundance. Intermediate 
to high abundances were associated with the detection of a negative 
eff ect of community centrality on local richness.  ∆ AIC refers to the 
diff erence between the best-fi tting model and the second best one.  
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  Figure 4.     Probability of a metacommunity eff ect on local diversity 
and body size. # e dotted and solid lines correspond to the models 
with and without the interaction eff ect between body size and the 
detritus category of diet, respectively.  ∆ AIC refers to the diff erence 
between the best-fi tting model and the second best one.  

Several taxa show more than one model equally congruent 
with observations (less than two unit of AIC of diff erence 
between models). However, the diff erence between these 
models usually involves substitutions among local variables 
or among centrality metrics, not aff ecting the interpretation 
of a local versus metacommunity eff ect. Congruent with 
their performances in associations between local diversity 
and isolation, degree centrality and eigenvector centrality 
were the two metrics most frequently incorporated into the 
generalized linear models. # e occurrence of a metacommu-
nity network eff ect was related to body sizes of taxa under 
consideration. Specifi cally, we found a signifi cant sigmoidal 
relationship between the probability of a regional eff ect on 
local diversity and body size (Fig. 4).    

 Discussion 

 Local diversity has long been considered as a result of 
the interplay between local and regional processes 
(MacArthur and Wilson 1967). However, the relative 
importance assigned to these processes and the mechanisms 
by which they are connected has changed signifi cantly 
through time (Chesson 2000, Hubbell 2001, Holyoak et   al. 
2005). Currently, diff erent theories consistently point to the 
fl ow of individuals among local communities as a chief 
determinant of community structure (Hubbell 2001, 
Holyoak et   al. 2005). # is fl ow determines real metacom-
munity structures that go beyond abstract idealizations of 
species pools (MacArthur and Wilson 1967, Weiher and 
Keddy 1999) to spatially explicit networks (Economo and 
Keitt 2008). Our approach based on metacommunity net-
work allowed us to detect signifi cant isolation eff ects in 14 
of 25 taxa even when local determinants were considered. 
Furthermore, the metacommunity eff ects we detected were 
typically large and comparable to classical local determinants 
of diversity, such as productivity, ecosystem size and hetero-
geneity (Rosenzweig 1995, Chesson 2000). 

 We considered four network centrality metrics (degree, 
eigenvector, closeness and betweenness) that describe com-
plementary attributes of the potential fl ow of individual 
members of the metacommunity through local communi-
ties (Economo and Keitt 2010). It is essential to compute 
a large set of metrics that refl ect community isolation in 
diff erent ways. In the metacommunity we considered, degree 
and eigenvector centralities were systematically identifi ed as 
determinant of local diversity, suggesting that individual 
fl ow in the immediate neighborhood and across the whole 
metacommunity impacts local diversity. Importantly, this 
outcome indicates the presence of ecological mechanisms 
operating at diff erent scales within the same metacommu-
nity. As a consequence, in addition to metacommunity and 
community scales, there are also intermediate levels of spatial 
aggregation at which individual fl ows impact local diversity 
(Cadotte 2006, Borthagaray et   al. 2014). Incorporation of 
metacommunity theory into the mainstream of ecological 
concepts means that there is now a pressing need for the 
development of statistical approaches that detect the spatial 
scales and metacommunity networks shaping local diversity 
(Logue et   al. 2011). 

 # e network approach complements recent improve-
ments in the empirical analysis of metacommunities based 
on variance partitioning, site-by-species incidence matri-
ces (Meynard et   al. 2013), spatial autocorrelation (Shurin 
et   al. 2009), and multispecies occupancy models (Dorazio 
et   al. 2010). While positive and negative eff ects were 
predicted by previous considerations, positive eff ects have 
been recorded more frequently (Economo and Keitt 2008, 
2010). # e principal mechanism underlying such positive 
eff ects is a reduction in local extinction rates mediated by a 
rescue eff ect and/or recolonization (MacArthur and Wilson 
1967, Brown and Kodric-Brown 1977). Similar fi ndings have 
been reported at the species level in real landscapes (Urban 
and Keitt 2001) and at the community level in theoretical 
simulations (Economo and Keitt 2008, 2010, Borthagaray 
et   al. in press)  . On the other hand, mechanisms determining 
a negative association between community centrality and 
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in determining local diversity. Nevertheless, most previous 
attention has been focused on local conditions as agents of 
biodiversity regulation (Chesson 2000; Borthagaray et   al. 
2012). Improved knowledge of the ways in which animals 
perceive landscape structure will contribute greatly to 
ecological understanding of the mechanisms determin-
ing species coexistence and biodiversity patterns (Pillai 
et   al. 2011, McCann 2012). # eoretical and experimental 
developments demonstrate that landscape structure var-
ies along gradients of dispersal abilities; this relationship 
between structure and dispersal presents challenges for 
researchers seeking to identify networks comprised of many 
species that coexist in metacommunities (Economo and Keitt 
2008, 2010). In this study we empirically demonstrated 1) 
a strong gradient in landscape structure determined by the 
spatial scale at which communities interact, and 2) several 
scales of landscape perception among diff erent taxa, which 
in turn aff ected local diversity patterns. We believe that our 
work contributes to advancing our understanding of animal 
perception of landscape structure and its eff ect on local and 
regional biodiversity. 
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local diversity have been subjects of less attention (but see 
Chase and Shulman 2009). We found that a negative eff ect 
of fl ow from and to a metacommunity is likely to occur 
in groups with intermediate to high abundances. # is pat-
tern may be related to biological attributes connected to 
abundance, such as competitive and predatory abilities. 
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