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ARTICLE INFO ABSTRACT

Available online 17 October 2008 The transit network design problem (TNDP) aims to determine a set of bus routes for a public trans-
portation system, which must be convenient from the viewpoints of both users (people who use public
transportation) and operators (companies who own the resources to give the service). This article
presents a constructive algorithm for the TNDP. It is specially designed to produce a set of routes that
fulfils demand covering constraints, while taking into account the interests of both users and operators.
Its general structure is inspired in the Route Generation Algorithm (RGA) of Baaj and Mahmassani, where
its original expansion of routes by inserting individual vertices is replaced by a strategy of insertion of
pairs of vertices. The algorithm proposed, called Pair Insertion Algorithm (PIA) can be used to generate
initial solutions for a local improvement or evolutionary algorithm, as well as to complete an unfeasible
solution with respect to demand covering constraints. Numerical results comparing PIA with RGA over
a real test case show that both algorithms produce solutions with similar quality from the users view-
point (in terms of in-vehicle travel time), while the former produces better solutions from the operators
viewpoint (in terms of number of routes and total route duration) and requires a higher execution time.
Since the TNDP arises in a context of strategic planning, a solution that reduces the operation cost of the
system is highly desirable, even though it takes more time to be computed. The experimental study of
the proposed algorithm also shows its ability to produce diverse solutions in both decision and objective
spaces; this is a useful property when looking at the use of PIA as a subroutine in the context of another
algorithm such as metaheuristics, in particular for a multi-objective problem like TNDP.

© 2008 Elsevier Ltd. All rights reserved.

Keywords:

Transit network design problem
Constructive algorithm
Heuristic

Demand covering constraints

1. Introduction decisions about timetable development, and bus and driver schedul-

ing are conditioned to it, so the overall cost of the public transporta-

Public transportation plays an important role in the dynamic of
many cities. It is widely recognized as a means to reduce traffic
congestion, to improve urban environmental conditions and to con-
tribute to the social inclusion of the inhabitants.

A key component in the overall planning of a public transporta-
tion system is the network design, where a set of routes is defined
over the street network. According to Ceder and Wilson [1], net-
work design is the first of the five stages of a systematic decision se-
quence, followed by frequency setting, timetable development, bus
and driver scheduling. Decisions at network design level are usually
taken for a long time horizon, in the context of strategic planning
[2]. The transit network directly determines characteristics of the
public transportation system with respect to the users interest such
as geographical accessibility and travel time; alongside with the fre-
quencies, it also defines an important component of the cost for the
operators. Once the transit network is defined, all the subsequent
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tion system highly depends on the transit network [1].

The transit network design problem (TNDP) aims to find a set of
routes with their corresponding frequencies, optimizing the objec-
tives of users and operators [3]. Main problem data are the street
network and the demand of trips between different points of the
city. Constraints refer usually to demand covering, required level
of service and resource availability. Frequencies are included in the
TNDP as decision variables because they also have a direct influence
in the cost structure of both users (determining the waiting time)
and operators (defining the required fleet size).

Several formulations have been proposed to model the TNDP
[3-6]. Other aspects of the problem have been modelled, such as
elastic demand [7-9], multi-modality [10,11], transfers and route di-
rectness [12].

The TNDP is a hard to solve combinatorial problem [5], given the
discrete nature of some of its variables (those that represent routes).
It is also difficult to formulate with a mathematical programming ap-
proach [13]. For all these reasons, most existing approaches to solve
it rely on approximative methods, i.e. heuristics and metaheuristics
[4,14-17]. Most of these methods use an specific purpose algorithm
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to explicitly construct a set of routes, which is not always feasible
with respect to demand covering constraints; a solution is said to
be feasible with respect to demand covering constraints if all the
demand given by an origin-destination matrix can be transported
by the routes of the solution. These constraints are very important
to fulfil.

A few works exist in the literature about heuristic algorithms
to construct a set of routes for the TNDP, while ensuring demand
covering feasibility [5,6,14]. Only the Route Generation Algorithm
(RGA) of Baaj and Mahmassani [14] generates starting from an
empty solution, a set of routes that covers the whole demand, while
considering some aspects of interest from both users and operators
points of view. RGA was designed taking into account several desir-
able properties and design principles (some of them taken from the
practitioners); in this sense, it can be considered as a heuristic that
incorporates a deep knowledge of the problem from the application
viewpoint. It includes a mechanism to explicitly cover the demand
(with or without transfers). However, the cost for the operators
(represented by number of routes and total route mileage) of the
resulting set of routes produced by RGA remains high when the
requirement of demand covering is increased [14].

In this work we take some ideas from RGA and we add new ones
to propose an algorithm that produce solutions that are more conve-
nient for the operators in comparison with RGA, while maintaining
almost the same cost for the users (in terms of travel time). Those
solutions are highly desirable, since they reduce the operation cost
(both fixed and variable) of the transit system, allowing to oper-
ate a more sustainable system while not degrading its quality from
the users viewpoint. The algorithm proposed address the problem of
the fulfilment of demand covering constraints, while taking care
in producing solutions that are convenient for both users (low in-
vehicle travel time) and operators (low number of routes and total
route mileage). A solution constructed by the proposed algorithm
can be used as a starting point for a local improvement method or as
an initial solution for an evolutionary algorithm, in order to improve
its quality. The algorithm can be also used to complete an unfeasible
solution with respect to demand covering constraints. We have per-
formed computational experiments which are based on a real test
case for which a description of its construction is given; the advan-
tage of using a real case is that it constitutes a reference to compare
the results produced by the algorithm.

The article is organized as follows. In Section 2 we give some defi-
nitions and notation used in the following sections. A brief literature
review specially focused on approximative methods and route set
construction algorithms for the TNDP is given in Section 3, as well as
the motivation of this work. A detailed description of the proposed
route set construction algorithm is presented in Section 4. Numeri-
cal results of an experimental study and their analysis are shown in
Section 5 while conclusions and future work are given in Section 6.
In Appendix A, a summarized explanation of the procedures followed
in order to construct the real test case is given.

2. Definitions and notation

We model a network that enables the definition of routes as an
undirected graph G = (N, E), where N is the set of vertices (|N| =n)
and E is the set of edges representing connections between vertices.
The cost ce of an edge e =(i,j) € E models the in-vehicle travel time,
i.e. the time spent by vehicles to travel between vertices i and j.
An origin-destination matrix D = {d;,i,j € [1...n]} is given, which
characterizes the demand; d;; denotes the demand from vertex i to
vertex j, expressed in trips per time unit in a given time horizon.
A route is a sequence of adjacent vertices in G. A solution S for the
TNDP is a pair (R, F) where R = {rq,...,1r} is the set of routes and
F={f1.....fr} is the set of frequencies; each f is a real value that

Table 1
Demand covering for three different sets of routes

R Do(R) Do(R) > Dgiin Do1(R) Do1(R) > Din
{(1,2)} 0.10 X 0.10 X
{(1,2);(2,3) 0.20 X 1.00 17
{(1,2,3)} 1.00 v 1.00 v
a b
0 5 40
5 0 5
1 2 3

Fig. 1. lllustrative example.

represents the inverse of the time between subsequent vehicles on
route ry,. We only work with the component R in this article.

The interests of users and operators are represented by functions
Z1 and Z,, respectively. They are defined in terms of the component
R of a solution S = (R, F), since we only consider routes. The former
is defined as

n n
Zi(R) =Y Y dj4(R), (1)

i=1j=1

where 4;(R) = tij(R)/t;*j represents (for passengers travelling from i
to j) a deviation ratio of the minimum in-vehicle travel time using
routes of R from the minimum possible value (independent of any
set of routes). According to this, tij(R) is calculated by using an all-
or-nothing assignment approach [18], and tlf‘j is calculated as the cost
of the shortest path in G between i and j. In the remaining part of
this article, when we refer to shortest paths in G and cost of a route
r, it is always with respect to the values of in-vehicle travel time
represented by ce for every edge e € E; in this way cost(r)= 3o Ce.
Operators interests are represented by

LR =Y b, 2)

L eR

which is the total duration of routes in R (equivalent to the total
route mileage), where thZZeerk Ce is the duration (round-trip time)
of route ry. Low values in both functions (1) and (2) are considered
in this work as a desirable property for a set of routes R which is
intended to be part of a good solution S = (R, F) for the TNDP.

For a given set of routes R, Dy(R) € [0, 1] is the proportion of the
total demand Dyt = 2?212}121 djj covered by routes in R directly
(without transfers). Analogous, Dg1(R) is the proportion of Dy cov-
ered by routes in R directly or indirectly (one transfer, at most). Dg‘i"

and Dg‘]i” are constant values, which constrain Dg(R) and Dgq(R),
respectively, as

Do(R)= D™, (3)
Do1(R)=DJ". (4)

We denominate constraints (3) and (4) as demand covering con-
straints. Table 1 shows for the illustrative case of Fig. 1 and for three
different sets of routes R, the corresponding values of Dy(R) and
Do1(R) and results of checking the fulfilment of demand covering
constraints when D" = 0.75 and D" = 1.00.
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Fig. 2. Graph G for the test case of Rivera.

Some comments about the model and its application. Vertices of
G represent zones of the city, created according to a given aggrega-
tion criterion; edges are logical connections between vertices, whose
travel time must be estimated. Routes are sequences of zones. When
transferring the results of the algorithm to the reality, forward and
backward directions of a given route may be composed by different
real streets, therefore their durations may differ slightly. Observe
that an appropriate level of aggregation must be used to define the
set of vertices N (zones), in order to construct a model whose results
(routes R) are useful. Fig. 2 shows a graphical representation of the
graph G corresponding to the test case used on this work.

3. TNDP and route construction

The TNDP is a hard to solve optimization problem. Its exact res-
olution has several difficulties [3,13], namely, high combinatorial
complexity [5], the requirement of an assignment submodel [2] and
a multi-objective nature [15].

It has been treated almost exclusively with approximative
methods. Its combinatorial complexity prohibits the exhaustive
enumeration of all feasible solutions. Mathematical programming
formulations face the difficulty of modelling the assignment com-
ponent; existing work using this approach has made simplifications
to it [10,19].

Existing approximative methods for the TNDP can be classified
in two groups [20,21]:

1. Heuristics. Classical approximative methods, either constructive
or local improvement procedures, as well as combinations of them
[3,14,16]. Another kind of heuristics for the TNDP consists of se-
lecting the best possible set of routes from a previously generated
pool of candidates [5].

2. Metaheuristics. Modern approximative methods that implement
efficient mechanisms to explore the search space. The application
of metaheuristics to the TNDP has been concentrated in using Ge-
netic Algorithms [6,13,17,22,23], but some works also explore the
use of Tabu Search [4], GRASP [15] and simulated annealing [24].

When solving the TNDP with some approximative methods,
routes have to be explicitly designed by using a route construc-
tion algorithm. Several routes must be generated, which are then

grouped to form a set of routes that fulfils the constraints of the
problem. An important type of these constraints are the demand
covering constraints.

A few works exist in the literature about heuristic algorithms to
construct a set of routes for the TNDP, while ensuring demand cover-
ing feasibility. Baaj and Mahmassani [14] propose a greedy construc-
tive algorithm that generates a set of routes from scratch. Israeli and
Ceder [5] use a non-linear set covering formulation to select a sub-
set of routes from a previously generated pool of candidate routes.
Fan and Machemehl [4] use an optimization model that includes
the uncovered demand in the objective function. The algorithms of
Ngamchai and Lovell [6] and Pattnaik et al. [22] do not guarantee
demand covering at the end of the execution.

The RGA of Baaj and Mahmassani [14] is the only constructive
algorithm that generates from scratch a set of routes, ensuring the
fulfilment of demand covering constraints; it also takes care of the
interests of users and operators in the produced results. RGA also
allows to specify a predetermined set of routes as an initial partial
solution. It proceeds by iteratively adding routes to the solution un-
der construction. Routes are generated by using the shortest path in
G between vertices with high demand. Additional vertices are then
inserted in these routes (expansion of routes) according to a pre-
specified criterion. The algorithm ends when the set of routes under
construction fulfils demand covering constraints (3) and (4). Fig. 3
shows a pseudo-code of RGA.

A key step in RGA is the expansion of routes (procedure
ExpandRoute), where the algorithm takes advantage of a previ-
ously existing route to cover the demand between vertices which
are close to it and vertices which are already included into the route.
Thus, the expansion of a route considers the insertion of vertices on
it, taken from a set of candidate vertices. A feasible candidate is a
vertex v which is at distance 1 (measured in number of edges) from
the route r and which fulfils the following constraints (as explained
by Baaj and Mahmassani in [14]):

. It does not already belong to r.

. It still has a high percentage of its total originating demand left
uncovered after previous insertions in other routes.

3. The resulting route (after insertion of v in r) does not become

circuitous.

N =
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procedure RGA(in Dg™", Dgi'"”, out R);

R — §; Do(R) — 0; Do1(R) « 0;

| « List of pairs of vertices (i,j) of G with di; # 0;

while Do(R) < DZ™ or Do (R) < D™ do
(u,v) < Select (%, 7) with maximum d;; in {;
r « Create a route with the shortest path between u and v in G;
ExpandRoute(r);
R— RU{r};
Delete from [ pairs of vertices whose demand is covered directly by r;
Update Do(R) and Do1(R);

end while;

return R;

end RGA;

Fig. 3. RGA, general structure.

4, The ratio of the contributed incremental demand covered to the
insertion cost (in-vehicle travel time) exceeds a minimum value.

5. The required frequency of service on the resulting route does not
exceed a maximum operationally implementable value.

6. The round-trip time of the resulting route does not exceed a
maximum allowable value.

A route is expanded until the set of feasible candidates to be
inserted is empty. Other elements of RGA (the initial number of
routes, the order of expansion of routes and the use of k-shortest
paths) were left aside on this simplified description; the essence of
the algorithm is given by the strategy of the expansion of routes.

The computational experiments performed with RGA in [14]
show that when demand covering requirements are increased, val-
ues of number of routes and total route mileage are significantly
increased. For example, a change in Dgﬁ"” from 0.90 to 1.00 causes
an increase of about 100% in the number of routes and 60% in the
total route mileage. Despite the fact that the algorithm can produce
good solutions from the users viewpoint, if these solutions have a
high cost for the operators, they could result in a system that either
is very expensive for the users (in terms of fares) or it may need a
great amount of subsidies to cover the operation costs.

This issue motivated the research concerning this article, where
a new strategy of insertion of vertices on existing routes is proposed,
inspired in the general structure of the RGA.

4. Pair Insertion Algorithm

The Pair Insertion Algorithm (PIA) is based on the observation
that the expansion of routes is a key component in the overall de-
sign of RGA, and therefore it determines the quality of the solutions
produced. Since only the insertion of individual vertices on existing
routes is considered by RGA, the inter-zonal nature of the demand
is not taken into account. This inter-zonal nature, which is given by
the origin-destination matrix, is addressed on this work by consid-
ering the insertion of pairs of vertices on existing routes, therefore,
covering directly the demand associated to them. In this way, ver-
tices which are at distances higher than 1 from the route will be
potentially inserted on it.

The basic principle of PIA is to connect pairs of vertices with high
values of demand. The connection is made either by creating a new
route based in the shortest path in G between those vertices or by
inserting both vertices on an existing route. Fig. 4 outlines the main
structure of the algorithm. It starts with an empty set of routes R, and
iteratively seeks to cover the demand given by origin-destination

procedure PIA(in D", D™, in puax, tmaz, out R);
R «— (; Do(R) < 0; Do1(R) < 0;
1 — List of pairs of vertices (i, j) of G with d;; # 0;
while Do(R) < D§"" or Doi(R) < Dgi'" do
(u,v) « Select (4, ) with maximum d;; in [;
r «— Create a route with the shortest path between u and v in G;
"« Create a route by inserting u and v in the most suitable
positions in the most convenient route "’ in R, by calling
Candidate(u, v, R,7');
if cost(r) < cost(r') — cost(r'"") then
R— Ru{r}
Delete from [ pairs of vertices whose demand is covered directly by r;
else
R—Ru{r}-{}
Delete from [ pairs of vertices whose demand is covered directly by ’;
end if;
Update Do(R) and Do:1(R);
end while;
Filter routes in R;
return R;

end PIA;

Fig. 4. PIA, general structure.

matrix D. A list [ of pairs of vertices whose demand is still not covered
directly is maintained. At each iteration step, the pair of vertices
(u,v) with the highest demand dyy in [ is selected and that demand
is covered according to one of the two following possibilities:

1. Creating a new route, using the shortest path between u and v
inG.

2. Inserting vertices u and v in suitable positions of a convenient
route of R. It evaluates the cost of insertion of both u and v be-
tween all pair of consecutive vertices in routes of R. The most
convenient route and the most suitable positions for insertion of
vertices u and v on it are those which minimize the cost increase
in the solution under construction.

The lowest cost increase due to insertion of vertices u and v in a route
of R according to case 2 is compared with the cost of the shortest
path between u and v according to case 1; the best (less costly) case
is selected and the algorithm proceeds. It ends when constraints of
demand covering imposed by parameters Djj'"" and Dgy" are fulfilled.
Observe that the structure of the main loop of PIA is the same as that
one of RGA. The difference is that where RGA always create a new
route to cover the demand associated to the first element of I, PIA
evaluates if that demand can be covered by expanding an existing
route, thus trying not to add an additional route.

Fig. 5 explains the computation of the most convenient candidate
route built by insertion of a pair of vertices; we discriminate the cases
when no vertex belongs to the route and when one vertex belongs
to the route. A route r with |r| vertices has |r] + 1 possible positions
for insertion of a single vertex; 1 denotes the position before the
first vertex of the route and |r| + 1 denotes the position after the
last vertex. When insertion of vertex v is performed between two
consecutive vertices v; and v;, ¢ inr, it is connected to them by using
the shortest paths in G between v; and v, and between v and v;, 1,
respectively. If the resulting route after the insertion contains a loop,
it is discarded as candidate.
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procedure Candidate(in u,v, in R, out r');
r’— 0; cost(r') «— oc;
for each r € R do
if u € r then
for each p € [1..|r| + 1] do
rAux < Insert v in position p in r;
if cost(rAuz) < cost(r') then r’ — rAuz; end if;
end for;
else if v € r then
for each p € [1..|r| + 1] do
rAux +— Insert u in position p in r;
if cost(rAuz) < cost(r’) then ' — rAuz; end if;
end for;
else
for each p1,p2 € [1..|r| + 1] do
r’ «— Insert u and v in positions p; and p> respectively in r;
if cost(rAuz) < cost(r') then v — rAuz; end if;
end for;
end if;
end for;

return ’;

end Candidate;

Fig. 5. Computation of the most convenient route.

In procedure Candidate, when trying to insert vertices into
routes, two constraints are imposed: maximum duration (round-
trip time) and maximum circuity factor, represented by parameters
tmax and ppqy. Tespectively. The circuity factor p of a route r with
extreme vertices u and v, is defined in [14] as the ratio between the
in-vehicle travel time between u and v using r, and the cost of the
shortest path between u and v in G (independent of any route), i.e.
p(r) = cost(r)/t};,,. These constraints are imposed to limit the growth
of the route, when several vertices have been inserted on it. Other
constraints such as route capacity constraints can be easily incorpo-
rated at the model and implemented in the proposed algorithm.

Since the insertion of pairs of vertices on a route r may imply the
insertion of a whole path P on r, it may be possible that there is an
already existing route r’ € R included on P. For this reason, there can
be at the end of the main loop of PIA, routes that are completely in-
cluded in other ones. PIA has a filter procedure that eliminates these
included routes, because our objective is to minimize the number of
routes and total route duration.

4.1. Rationale of the algorithm

The design of PIA is based on the following line of thought.

Probably the main objective in transit network design is to cover
the demand in the best possible way, given a restriction in the avail-
able resources (however, other objectives can be stated when de-
signing a transit network [25]). Since the demand has an inter-zonal
nature, expressed in the form of an origin—-destination matrix, it has
to be covered for pairs of vertices. For this reason, we consider the
insertion of pairs of vertices on routes as a key idea of our algorithm.

The ideal solution from the users viewpoint is one that covers
every non-null element of demand dij with a route that includes the
shortest path between i and j in G. It is desirable that this condition

can be fulfilled for a high number of elements in D. Almost every work
related to the TNDP agrees that there must exist a route including
the shortest path in G between pairs of vertices with high demand.
Based on these observations, the algorithm proposed considers the
elements of D in decreasing order of demand and generates routes
using the shortest path between them.

Since the ideal solution from the users viewpoint is not conve-
nient from the operators viewpoint, the number of routes has to be
restricted. For this reason, when we consider the next pair of vertices
(u,v) whose demand dyy has to be covered, we test the possibility
of including these two vertices on an existing route in the solution
under construction. Doing this, we take advantage of the existence
of a route, and we modify it so it can serve the demand associated
to a pair of vertices which are close to it. Since it is not desirable
to extend so much an existing route by inserting vertices on it (be-
cause travel time will be increased for demand already served by
the route) we impose constraints of maximum route duration and
circuity factor to candidate routes resulting from the insertion.

Even if a pair of vertices (u, v) can be inserted on an existing route,
we compare the cost of extending this route with the cost of the
shortest path in G between u and v. We always try to minimize the
increase of the overall duration of routes in the system. This criterion
represents somehow the interest of the operators, since the sum of
the durations of all routes in the system is directly proportional to
the fleet size (which is an important component in the costs for the
operators).

4.2. Implementation variants

The PIA constructive algorithm as presented in Fig. 4 admits some
variants on its implementation. The following is a list of modifica-
tions that can be considered with different purposes:

1. Concerning the decision of the next element of list I to be consid-
ered to cover its corresponding demand, the original strategy (as
presented in Fig. 4) is deterministic, i.e. always the pair of vertices
with maximum demand is selected. One possible alternative is
to consider a sublist ' of elements with highest demand in [ and
then select one element from it, in a systematic way. A particular
case of this strategy is the greedy randomized construction [26],
where a random selection of an element of I is performed, with
a given distribution of probabilities.

2. The shortest path in G is always used when PIA creates a new
route to be added to the solution under construction. Baaj and
Mahmassani [14] observe that by using alternative paths, there
are chances to cover more demand with a slight increase in the
route length; k-shortest paths [27] have been used in [4,7,14] in
the context of the resolution of the TNDP and this feature can be
easily incorporated to the original version of PIA.

3. The proposed algorithm starts with an empty set of routes, but
it can be fed with an initial set of given routes R; if so, Dg(R),
Do1(R) and list | have to be appropriately initialized with informa-
tion given by R. This characteristic of incremental construction of
the algorithm allows for example to consider a set of initial fixed
routes given by the decision maker. Another use of the algorithm
can be made when there is a need to complete an unfeasible so-
lution with respect to demand covering constraints, since some
algorithms (for example some local search algorithms [20]) ma-
nipulate unfeasible solutions at intermediate steps, and may end
with no feasible solution.

4. Though PIA uses an undirected graph as underlying model, it can
be adapted to work with a directed graph as input network. This
constitutes a more realistic modelling since routes may not have
the same duration in both ways. Both the structure of routes
and some parts of the algorithm (specially those that check and
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update demand covering) must be modified in order to model
this characteristic.

5. Demand covering with more than one transfer can be consid-
ered in the model and implemented in the algorithm. Though it
adds more complex subroutines to the algorithm, it may decrease
its overall execution time, since under this scenario there is no
need to create or modify routes when a given percentage of the
whole demand is already covered with a given number of trans-
fers (therefore the algorithm will stop earlier).

5. Experimental study

Both PIA and RGA were tested using a real case related to the city
of Rivera, Uruguay, which is described in Appendix A. The real case
gives a reference for comparison, specially in terms of the required
number of routes as a function of demand covering requirements.
Experiments were designed to produce results in the following two
categories:

1. Comparison between PIA and RGA. This set of experiments was
made to compare the behavior of both algorithms, in terms of
their sensibility under changes in demand covering requirements,
and in terms of values of Z; and Z; of the solutions produced, as
well as execution times.

2. Analysis of diversity. This second set of experiments was designed
to investigate the ability of PIA to produce different solutions, by
changing values of some of its parameters. This is made in order to
evaluate the usefulness of PIA as a subroutine of a more structured
algorithm, which may require a set of diverse solutions.

Implementations were made in C++; programs were run on a PC
Pentium 4, with a 1.6 GHz processor and 512 MB of RAM. Values of
Zy are calculated in terms of the elements of the origin-destination
matrix, which are expressed in trips per minute; Z; is expressed in
minutes.

5.1. Comparison between PIA and RGA

The implementations of both algorithms use the same data struc-
tures and subroutines, thus trying to make the comparison as fair as
possible. Both algorithms rely on the availability of pre-computed
shortest paths (and their cost) between all pairs of vertices in G. For
the implementation of RGA, the criterion of maximum demand per
minimum time insertion was implemented [14]. According to this,
the vertex which maximizes dy/ty is selected (from the set of fea-
sible candidates) for insertion on route r, where dy is the demand
of elements in | between vertex v and vertices on r, and ty is the
cost increase of the route resulting after the insertion of v. The im-
plemented procedure ExpandRoute applies three out of the sixf
constraints of the original version of RGA, namely, loop avoiding,
maximum route duration and maximum circuity factor.

5.1.1. Sensibility for different levels of demand covering

As mentioned in [14], increasing the imposed levels of demand
covering causes an increase in the number of routes and total route
mileage in the solutions produced by RGA. This tendency was also
expected in PIA, but to a lower extent.

In this experiment we run both algorithms for different combi-
nations of D81i” and Dg’]i", and we investigate its effect in values
of deviation from the shortest path Z;, total route duration Z, and
number of routes |R|.

Table 2 shows that parameter D()”li” is the main factor that rules
the increase of Z, and |R| for both algorithms; values of Z; do not
necessarily increase because they are summations of ratios that can
decrease, in particular for higher levels of Df"". While increasing

Dgﬂn for a fixed value of D(’?]"” does not impact so much (values along

Table 2

Sensibility under changes in levels of required demand covering

1D 0.50 0.75 0.95 0.99 1.00

(a) PIA

I z
0.50 11.35 12.61 15.90 16.20 16.09
0.75 - 14.41 15.90 16.20 16.09
0.95 - - 16.24 16.20 16.09
0.99 - - - 16.14 16.09
1.00 - - - - 16.09

B Z
0.50 207.48 306.63 713.24 831.40 1093.04
0.75 - 359.68 713.24 831.40 1093.04
0.95 - - 763.09 831.40 1093.04
0.99 - - - 1042.43 1093.04
1.00 - - - - 1117.98

Din R|
0.50 3 4 10 11 17
0.75 - 5 10 11 17
0.95 - - 10 11 17
0.99 - - - 15 17
1.00 - - - - 18

(b) RGA

Dxu'nin Zl
0.50 12.20 13.46 16.17 16.26 15.97
0.75 - 15.16 16.17 16.26 15.97
0.95 - - 16.01 16.26 15.97
0.99 - - - 16.17 15.97
1.00 - - - - 15.97

Dpin Z
0.50 280.14 368.47 1106.24 1602.67 2319.86
0.75 - 717.63 1106.24 1602.67 2319.86
0.95 - - 1486.28 1602.67 2319.86
0.99 - - - 1991.08 2319.86
1.00 - - - - 2402.13

D:]m" ‘R|
0.50 3 4 12 18 26
0.75 - 8 12 18 26
0.95 - - 16 18 26
0.99 - - - 22 26
1.00 - - - - 27

the same column), increasing Dgllm has a significant impact (values
along the same row).

When comparing PIA with RGA, we can observe that while values
of Zy vary in a similar way, values of Z; and |R| increase to a high
extent for RGA. For example, for a fixed value of Dg”" = 0.50, an

increase of Dg‘f” from 0.50 to 1.00 causes an increase in Z, of 427%
for PIA and 728% for RGA; the increase in |R| is 467% for PIA and 767%
for RGA. This shows that when we increase the amount of demand
covered to that level (which is desirable from the users viewpoint),
the cost increase for the operators (represented by number of routes
and total route duration) when using RGA is around 65% higher
than the cost increase using PIA. The cost increase for the users
(represented by travel time) is almost the same for both algorithms.

5.1.2. Objective values of the produced solutions

In this experiment we compare the results produced by both
algorithms in terms of functions Z; and Z,, which are intended to
be minimized when solving the TNDP. We also compare values of
number of routes and execution time.

In order to compare, we implemented the greedy randomized
construction variant explained in Section 4.2 (implementation vari-
ant number 1), in both PIA and RGA. The list I is constructed by
selecting the o|l| elements with highest demand of I, where o ¢
[0,1] is a parameter. The random selection of an element (u, v) from
I' is made by using a biased probability distribution [28], where
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Table 3 Table 4

Results of 10 independent executions Summarized results of 1000 independent executions

Execution VA Z IR| over T VA Z, |R| over T

PIA PIA
1 16.20 1179.83 19 660.45 15.20 Minimum 15.26 903.60 12 401.74 6.91
2 16.32 1198.66 19 665.79 15.16 Average 16.30 1146.08 18 615.23 12.82
3 16.75 1098.18 19 584.33 13.39 Maximum 17.67 1441.05 24 860.55 21.36
4 16.09 1212.77 19 662.04 13.77
5 15.90 1190.65 19 647.47 13.11 RGA
6 16.46 1225.81 16 697.35 15.23 Minimum 15.49 1429.40 15 880.49 0.27
i 16.14 1074.17 19 560.99 11.56 Average 16.18 1998.44 22 1377.50 0.47
8 16.65 1128.35 15 645.15 12.23 Maximum 17.47 2610.48 28 1950.24 113
9 15.65 1218.93 20 673.14 15.42
10 17.04 1081.83 18 578.34 11.25

Average 16.32 1160.92 18 637.51 13.63

RGA less than the number of routes in the real system of Rivera, which is
1 16.30 2114.59 23 1503.43 0.48 13; on the other hand, the smallest set of routes produced by RGA
2 16.10 1851.23 20 1250.00 0.39 has 15 elements.
3 15.89 1960.08 21 1338.90 0.38
4 16.49 1997.97 22 1392.33 0.52
5 16.16 1818.06 20 1210.66 0.39 ; o
6 16.13 2307.79 24 1681.13 0.44 5.2. Analysis of diversity
7 16.05 2040.36 22 1395.03 0.34
8 16.10 1966.98 21 1358.40 0.39 Since PIA can be used as a subroutine of another algorithm (for
9 15.71 2144.98 23 1527.34 041 example, a metaheuristic working with populations or with a multi-
10 15.92 2036.59 21 1403.43 0.33 . . . .

start strategy), it can be useful to obtain different (diverse) solutions;
Average 16.09 2023.86 22 1406.07 0.41 this type of diversity is considered with respect to decision variables.

bias(u, v) = dyy, and the corresponding probability is

bias(u, v)

Prob(u,v) = W

(5)

Demand covering related parameters were set as D{)”i” = DB”{” =
1.00; we impose this strong requirement of demand covering for two
reasons: (i) to compare results under extreme conditions of required
demand covering, (ii) to obtain solutions which are comparable to
the public transportation system of Rivera, where all the demand
is served without transfers. Values of parameters over routes were
Pmax = 1.5 and tmax = 120 (minutes). Parameter o for the greedy
randomized construction was set to 0.2.

Table 3 shows for each set of routes R produced by each algorithm
in 10 independent executions, values of functions Z; and Z5, number
of routes |R| and execution time T (in seconds). We also calculate a
measure of the overlapping of routes in a solution, defined as

over(R) = Zce max{0,Re — 1},
ecE

where Re is the number of routes in R which use edge e.

We can observe that while both algorithms produce results with
similar values in Z1, when comparing averages, RGA produces higher
values than PIA in number of routes (22% higher) and total route du-
ration (74% higher). This difference is accompanied by an overlapping
of routes which is more than 100% higher for RGA, suggesting that
there are many routes serving the same demand in solutions pro-
duced by this algorithm. On the other hand, execution time is highly
favorable for RGA, which is in average 27 times lower than the ex-
ecution time for PIA. This significant difference can be explained by
(i) the quadratic computational complexity of the Candidate sub-
routine in PIA and (ii) the computational burden resulting from the
handling of paths in the insertion of pairs of vertices in PIA.

Table 4 shows results from 1000 independent executions of both
algorithms, summarized in minimum, average and maximum values.
We can observe that averages remain approximately the same as
those in Table 3. Minima in Z; are very similar between PIA and
RGA, and relatively close to its lower (theoretical) possible value,
that is attained when Aij(R):l for every (i,j), in this case, 13.94. One
remarkable fact is that PIA has produced a solution with 12 routes,

On the other hand, given the multi-objective nature of the TNDP, it
may be desirable to obtain solutions with different trade-off levels
between the conflicting objectives of users and operators; this type
of diversity is considered with respect to objective space.

In this section we study the diversity in decision space by com-
puting a measure of similarity among solutions, which takes into
account the structure of their routes (in terms of the sequences of
vertices). Diversity in objective space is grasped graphically, by plot-
ting the results in a two-dimensional space defined by the objectives.

5.2.1. Diversity in decision space

When using PIA as a subroutine of an approximative algorithm for
the TNDP, a possible requirement imposed to it, is the ability to gen-
erate a diverse set of solutions (sets of routes). Some metaheuristics
require a constructive algorithm capable of producing several solu-
tions, being each one different from the other ones (see for example
GRASP, Genetic Algorithms and scatter search in [29]). This differ-
ence (or diversity) is considered with respect to decision variables,
in this case the structure of routes. Several existing metaheuristic
based algorithms for the TNDP have this requirement on the con-
structive algorithm [6,15,17,23].

In this work, we propose a diversity measure diver over a set of
solutions R = {Rq, ..., Rm}, which is defined as

X (R;Rp)9R i< SR, Ry)

Y1
diver(R)=1 R 12 ,

where sim is a measure of similarity between two sets of routes
calculated as
ZreRi sim(r, R;) + ZreRj sim(r, R;)

sim(Ri,Rj) = RIT IR

Similarity between sets of routes is calculated in terms of the simi-
larity of a route with respect to a set of routes, it is defined as

sim(r, R) = max{sim(r, ;)},
T,'ER
where sim(r, ;) is the proportion of the cost of the arcs in r which

are already included in r; with respect to its cost, i.e. sim(r,r;) =
Zeemeer,- Ce/Y_ecr Ce. Thus, the diversity measure is based on a sim-

ilarity measure that takes into account the structure of routes in
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detail. Note that diver(R) € [0, 1], where 0 states that all solutions
in R are identical (meaning that R is not a diverse set) while 1
indicates the opposite situation.

In order to obtain diverse solutions in decision space by using
PIA, we change its o parameter and we use the implementation
variant number 2 (explained in Section 4.2), where the new route
to be considered for addition to the solution under construction is
generated by using one of the k-shortest paths (k is a parameter); the
selection is made randomly with a uniform probability distribution
in the discrete interval [1...k]. The k-shortest paths are generated
in a previous step using the Yen algorithm [27].

In this experiment we vary o and k, and for each combination
of these parameters we perform 10 independent executions of PIA,
thus generating sets of 10 solutions over which diversity values are
computed and shown in Table 5. Observe that diver is not so sen-
sible to parameter o; any value of «>0 will cause PIA to produce
a diverse set of solutions (since o = 0 represents the determinis-
tic version of the algorithm). Parameter k shows a higher influ-
ence in diversity, with a monotonically increasing tendency; diver-
sity increases even for high values of k; however, we must take into
account that respective solutions are not necessarily good in terms
of Zy and Z,.

We observe that diversity is always far from 1.00. This fact sug-
gests that still it may be possible to improve the diversity of the re-
sults, by introducing other mechanisms in the algorithm; however,
we must consider that the fulfilment of demand covering constraints
(specially for higher values of ngin) keeps bounded the maximum
reachable diversity.

Table 5

Diversity in decision space

o/k 1 2 5 10 20 50
Deterministic 0.00 0.00 0.00 0.00 0.00 0.00
0.2 0.31 0.37 0.39 0.44 0.44 0.45
0.4 0.30 037 0.42 043 0.44 0.46
0.6 0.31 038 0.41 0.42 0.46 0.47
0.8 0.32 0.37 0.41 0.43 0.45 0.47
1.0 0.34 0.36 0.41 0.44 0.44 0.46

5.2.2. Diversity in objective space

Since the TNDP is a multi-objective problem, where objectives of
users and operators are conflictive [5,15], a possible use of PIA con-
sists in producing solutions with different trade-off levels between
these objectives (in our case represented by functions Z; and Z,,
respectively). These different solutions can be obtained simply by
taking advantage of the stochastic nature of the greedy randomized
version of the algorithm. However, by changing the parameter of
maximum duration of routes tmgx, a wider range of trade-off levels
can be obtained. In this experiment we made 10 executions of the
greedy randomized version of PIA with the same parameter config-
uration as that used in Section 5.1.2; at each execution the value of
tmax is randomly selected (with uniform probability) from the real
interval I = [40, 120] (minutes).

Several measures have been proposed to evaluate the diversity
in objective space of a set of solutions for a multi-objective problem
[30]. However, all of them must be applied to a non-dominated
set of solutions. Because we are interested in getting a sound of
the diversity in objective space of all obtained solutions, we use a
graphical method consisting in plotting the solutions on the two-
dimensional space defined by Z; and Z,.

Fig. 6 shows the 10 solutions obtained by the greedy randomized
version of PIA (set Rq, already shown in Table 3) as well as the 10 so-
lutions obtained by the same version of the algorithm also including
the variation of tmgx as explained before (set R;). We can see that
there is a region of the objective space (corresponding to low values
of Z; and high ones of Z) that is covered by R, and not covered
by Ry. This shows that by changing the parameter tmqx, the algo-
rithm is able to produce solutions with very low cost for the users
(and very high for the operators), which cannot be obtained by the
greedy randomized version. Despite these solutions may represent
an extreme trade-off level between the conflicting objectives (and
therefore they may not be practicable in the real system), they may
be useful in the context of an algorithm that is designed to produce
a Pareto front as solution of the multi-objective TNDP. The highest
value reached by PIA for Z, in 1000 independent executions using
only the greedy randomized version is 1441.05 (see Table 4), which
is significantly lower than the maximum reached in Ry (which is
greater than 2100.00, with a low value in Z7, suggesting that it is close
to the optimal Pareto front [30]). Thus, the variation of parameter

' ' ' Gr'eedy randomized @
2200 X Greedy randomized + varying t,, <
X
2000 " |
1800 ]
' 1600 1
1400 r .
X
X
L ° b 4
1200 oo
x X ° e °
1000 X .
14 14.5 15 15.5 16 16.5 17 17.5

Fig. 6. Diversity in objective space.
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tmax allows the algorithm to produce solutions in a wide range of
trade-off levels between functions Z; and Z,. It is interesting to note
that diversity in objective space does not imply necessarily diversity
in decision space for solutions in Ry; we observe that diver(Ry) =
0.27, which is lower than the minimum diversity already shown in
Table 5.

6. Conclusions and future work

The PIA proposed modifies the RGA of Baaj and Mahmassani by
using a new strategy of insertion of pairs of vertices, instead of the
original expansion of routes by inserting single vertices.

When compared with RGA, PIA produces solutions with similar
values of in-vehicle travel time, and significantly better in terms of
number of routes and total route duration. On the other hand, exe-
cution time is significantly higher; this fact is explained mainly by
the quadratic computational complexity of the subroutine of inser-
tion of pairs of vertices, which is intensively used by PIA. Further
investigation looking at possible strategies to reduce the complexity
of the algorithm are required to improve execution times. However,
it is worth mentioning that execution time is not the main concern
in the context of strategic planning, where TNDP takes place. Though
execution times are highly favorable to RGA, the cost of the solu-
tions produced by PIA from the operators viewpoint are much lower
(while the cost for the users is almost the same). In terms of the real
transit system, this reduction of operation costs may imply a reduc-
tion on fares and/or subsidies, while maintaining the revenues of the
operators and the level of service for the users.

The algorithm has shown to be flexible to be used as a subroutine
in other algorithms such as metaheuristics; it is capable to produce
diverse solutions in both decision and objective spaces. It is used in
[15] to generate solutions with different trade-off levels between the
objectives of users and operators, in the context of a metaheuristic
based algorithm; it is also used in [31] to complete unfeasible solu-
tions with respect to demand covering constraints.

A real medium-small size test case was used in this work. The
algorithm has shown to be capable of producing solutions which
are comparable (in terms of number of routes) to real solutions. For
cases of much bigger sizes, the applicability of the algorithm has to
be tested, specially with regard to execution time. Demand cover-
ing plays an important role on those cases: high imposed levels of
demand covering without transfers may impact on the performance
of the algorithm, by increasing its execution time. Also the possi-
bility of covering the demand with more than one transfer has to
be considered in both model and algorithm for big cases, since the
budget of the operators will not allow direct connections as users
might wish; this impacts on the complexity of the implementation
of the algorithm but not necessarily it degrades its computational
performance (as explained in Section 4.2).

It would be also interesting to study how close are the solutions
produced by PIA to Pareto optimal solutions according to objectives
21 and Zz.
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Appendix A. Real test case

A real case was used for testing the algorithms on this work.
It is related to a medium-small size city of 65,000 inhabitants in

Uruguay, the city of Rivera. By using a real case, we have a graph G
and an origin-destination matrix D of real characteristics, which is
not common in fictitious cases. This provides a basis for comparison
and (in some sense) validation of the algorithm.

When data gathering for this work was accomplished on August
2004, the public transportation system of Rivera operated 13 bus
lines, with an average route length of 13.6 km, and an imposed du-
ration (round-trip time) of 60 min each. The inter-zonal demand has
a radial pattern, being the city center the main attractor of trips. In
a regular mid-week day, an average of 13,360 trips are performed
using public transportation in Rivera.

Data to construct a real test case for the TNDP are not easy to
gather. Graph G can be generated from a representation of the street
network; a Geographic Information System can be helpful for this
processing. However, to construct the origin-destination matrix D,
a considerable amount of information has to be compiled [18], to
express the needs of public transportation between different points
of the city.

The activities related to the construction of the test case of Rivera
were part of a related project. The web-site http://www.fing.edu.
uy/~mauttone/tndp contains a description of the project as well as
the data of the case. Details of the procedures are given in [32]. In
this section we give a brief overview of its three main components:
zone system, graph and demand.

Zone system: The city was divided into zones. Each zone comprises
approximately 4 x 4 blocks of 100 m each. This size is intended to
apply a criterion of geographical accessibility of the people to the
public transportation system. We consider that 400 m represent a
maximum reasonable walk distance to access to a bus line passing
through the zone. The demand produced (attracted) by a given zone
is considered as covered when a line passes by any place in the street
network inside the zone and inside the destination (origin) zone.

Graph: The graph G is an abstraction of the real street network.
We do not use the real street network because final decisions about
the routing of buses have to take into account the location of special
places, such as schools or hospitals, and other considerations which
are difficult to include in the graph model. There is a vertex in G
representing each zone of the zone system; it is located over the
intersection of streets that is nearest to the barycenter of the cor-
responding zone. An edge exists between two vertices in G if their
corresponding zones are adjacent; its value of in-vehicle travel time
is calculated from the distance of the shortest path in the street
network between its extreme vertices and a bus commercial speed
estimated in 13.6 km per hour. The resulting graph of Rivera, con-
structed according to the explained procedure, has 84 vertices and
143 edges (Fig. 2).

Demand: Demand data were collected by means of a survey made
on-board of lines operating on the public transportation system of
Rivera. The methodology of the survey is based on the one proposed
by Stopher et al. [33]. A sample of 13 out of the 23 bus runs per-
formed per hour by the lines of the system was selected; a run is a
trip of a bus going over the route at a given time. For each one of
these runs, origin and destination stops were recorded for every per-
son using the bus. Data were collected on a time period of 12 h. For
each line, origin—-destination counts were expanded according to the
sample size. Line origin-destination matrices from the 13 lines were
consolidated in a single system origin—-destination matrix. It contains
average values in the 12 h time horizon. This matrix is intended to
represent the need for public transportation across all the operation
period of the system. Given the size of the considered time horizon,
significant peaks of demand for some pairs of vertices in some time
periods may be smoothed in the average; for this reason this ma-
trix is not suitable for estimation of passengers flow, and therefore
not suitable for the calculation of required frequencies on the bus
lines. A final step in this data processing consist in transforming the
origin—destination matrix from the level of bus stops to the level of
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zones. The resulting matrix constructed according to the explained
procedure has 5% of non-null elements. This matrix is based on ob-
served values which depend on the particular lines operating on the
system when data were collected. However, we consider that for the
city of Rivera, this matrix of observed trips is a good approximation to
the matrix of desired trips, mainly due to (i) the highly captive char-
acteristic of the users of the public transportation system of Rivera
and (ii) the high spatial coverage of the city by the existing lines.
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