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Abstract In plant tissue culture research, there is a constant
need to search for novel substances that could result in better
or more efficient growth in vitro. A relatively unknown com-
pound, phloroglucinol (1,3,5-trihydroxybenzene), which is a
degradation product of phloridzin, has growth-promoting
properties. Phloroglucinol increases shoot formation and so-
matic embryogenesis in several horticultural and grain crops.
When added to rooting media together with auxin, phloroglu-
cinol further stimulates rooting, most likely because phloro-
glucinol and its homologues act as auxin synergists or auxin
protectors. Of particular interest is the ability of phlorogluci-
nol—a precursor in the lignin biosynthesis pathway—to ef-
fectively control hyperhydricity through the process of
lignification, thus maximizing the multiplication rate of
woody species and other species that are difficult to propagate.
Phloroglucinol has also been used to improve the recovery of
cryopreserved Dendrobium protocorms, increasing the poten-
tial of cryopreservation for application in ornamental biotech-
nology. Phloroglucinol demonstrates both cytokinin-like and
auxin-like activity, much like thidiazuron, and thus has con-
siderable potential for application in a wide range of plant
tissue culture studies.

Keywords 1,3,5-Trihydroxybenzene . Auxin synergist .

Rooting . Hyperhydricity

Introduction

Rationale for the use of phloroglucinol in plant tissue
culture. Phloroglucinol (PG, 1,3,5–trihydroxybenzene or
phloroglucin (PG tautomer); Fig. 1), is not well-known to
many plant tissue culture scientists. Although PG is often
used as a supplement to other plant growth regulators
(PGRs) in vitro, it has rarely been the focus of tissue culture
or developmental studies simply because its true effect has
usually been masked by the presence of other, more com-
monly used PGRs. However, a compilation of those studies
in which PG has been used in vitro for inducing or improv-
ing different plant developmental events clearly shows PG
to be a much more powerful and interesting compound than
previously recognized (Table 1). Indeed, a wealth of PGRs
is already used quite effectively in plant tissue culture for
most plant species and the reader might pertinently ask,
“Why is PG necessary or important”? However, there are
still many plant species for which no effective in vitro
propagation protocol has been described. Moreover, the
ineffective recovery of cryopreserved tissue and the hyper-
hydricity of tissue cultures caused by poor lignification can
often hamper the effectiveness of current protocols for hard-
wood species or even herbaceous plants that can easily
become hyperhydric in vitro. There are other plausible sol-
utions to such deficiencies in plant tissue culture, such as the
use of gas-permeable vessels or CO2 enrichment (Teixeira
da Silva et al. 2005a, b), but the costs and technical require-
ments of such options still remain beyond the means of most
plant tissue culture scientists. Thus, alternative chemical
means of dealing with these issues are required. We have
found that PG has much more far-reaching effects and wider
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potential applications than simply serving as a PGR in in
vitro growth and development.

By showing the reader how PG has been used in vitro and
its effects on various tissue culture conditions and develop-
mental stages, we hope to promote a new avenue of research
in plant tissue culture. This research could provide solutions
for several important problems that are currently bottlenecks
to biotechnological approaches such as genetic transforma-
tion, growth in bioreactors, or in vitro molecular biology
studies. For example, one of the problems underlying the
rapid advance of transgenic studies in orchids (Teixeira da
Silva et al. 2011) is the extremely sensitive nature of mate-
rial to the PGRs currently used in vitro, and the use of PG
could provide a viable alternative to current protocols that
have either failed or have produced poor results. Moreover,
the almost total lack of viable protocols in orchid for cryo-
preservation and successful regeneration of cryopreserved
material could be reversed by the use of PG, as recently
demonstrated for Dendrobium hybrid seeds (Galdiano et al.
2012). Thus, this review provides an overview of the liter-
ature on the use of PG in plant tissue culture and develop-
mental studies and highlights areas in which PG presents a
realistic alternative to more widely used PGRs.

Structure and function. PG, one of the degradation products
of phloridzin (the 2′-glucoside of phloretic acid), is a phe-
nolic compound known for its growth-regulating properties
(James and Thurbon 1979; Kumar et al. 2005). PG crystal-
lizes from water as the dihydrate, which has a melting point
of 116–117°C, but the anhydrous form melts only at 218–
220°C. The latter form sublimes but does not boil intact
(http://pubchem.ncbi.nlm.nih.gov/). This makes PG resis-
tant to autoclaving and thus highly applicable to plant tissue
culture. The fact that PG does not need to be filter sterilized
also simplifies its use in vitro. Knowledge about PG’s phys-
iological relevance in planta is limited, although apple plant
tissues are known to accumulate high amounts of PG, pos-
sibly as a response to the invasion of various pathogens
(Gosh et al. 2010); this suggests that PG is an important
component of the response to plant pathogen attack.

PG is a benzenetriol (a trinitrobenzene derivative) that
occurs in nature in the A-ring of flavonoid compounds and
many other plant phenolic compounds. Naturally occurring

bioactive PG compounds have been isolated from different
sources such as plants, marine algae (families Phaeophyceae
and Fucaceae), and microorganisms. PG derivatives are a
major class of secondary metabolites that occur widely in
the Myrtaceae as well as in several other families, including
the Guttiferae, Euphorbiaceae, Aspidiaceae, Compositae,
Rutaceae, Rosaceae, Clusiaceae, Lauraceae, Crassulaceae,
Cannabinaceae, and Fagaceae (Pal Singh and Bharate
2006). The evidence suggests that naturally occurring or
synthetically produced PG or PG derivatives may provide
new classes of PGRs, opening up new avenues of research
for plant tissue culture and development, much like the
compounds in smoke water were classified into a new class
of PGRs, the karrikins, just 3 yr ago (Chiwocha et al. 2009).

Broader applications in plant biology. Although there are
many uses of PG in the medical and pharmaceutical indus-
tries and research, their application in plant biology is still
very limited. Phytochemical investigations of several spe-
cies in the genus Hypericum, used in traditional medicine,
have revealed the presence of PG derivatives, usually
through the use of HPLC-MS (Kim et al. 2003), which
possess cytotoxic, apoptotic, antibacterial, antioxidant, anti-
depressant, or anti-inflammatory bioactivities (Winkelmann
et al. 2003; Athanasas et al. 2004; Ahn et al. 2007; Crockett
et al. 2008; Kong et al. 2009; Saddique et al. 2010; Odabas
and Çirak 2011; Stein et al. 2012).

PG isolated from lemon peel, a waste product in the
citrus industry, was active against oral bacteria that cause
dental caries and periodontitis, such as Streptococcus
mutans, Prevotella intermedia, and Porphyromonas gingi-
valis (Miyake and Hiramitsu 2011). PG would thus provide
potential application for use as an antimicrobial agent both
in vitro and in planta. The half-life of PG and its derivatives
is unknown, although its ability to be autoclaved makes it an
attractive alternative to antibiotics. It might also serve to
“sterilize” tissue culture media without the need for auto-
claving, much like liquid chlorine dioxide (Cardoso and
Teixeira da Silva 2012). PG is currently used in the
Wiesner test (PG-HCl reagent), in which plant lignin-
containing material stains red (Christiernin et al. 2005;
Galla et al. 2011). If suitably modified, and if its toxicity
in tissues could be avoided during plant growth, PG could
serve as a potential in situ marker for identifying tissue
lignification without the need to sacrifice tissue for histo-
logical analyses.

Applications of Phloroglucinol in Plant Tissue Culture
and Micropropagation

Hyperhydricity: a root cause of poor plant development in
vitro. Micropropagated shoots in vitro can become

Enol form Keto form

Figure 1. Equilibrium of enol and keto forms of phloroglucinol.
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hyperhydric as a result of growth and culture conditions that
act as stress factors. Hyperhydric tissues show several bio-
chemical characteristics that explain their morphological ab-
normalities such as reduced lignin and oxidative stress
(Rogers and Campbell 2004). Hypolignification is associated
with lower activities of enzymes involved in the synthesis of
lignin precursors and their polymerization and can arise from

in vitro conditions such as high humidity, high PGR levels,
gas accumulation, and high light intensity (Kevers et al. 2004;
Saher et al. 2004). These stress conditions could mediate a
rapid endogenous ethylene burst, which decreases peroxidase
activity and lignification (Al-Maarri and Al-Ghamdi 2000).
One of the greatest hindrances to successful plant tissue cul-
ture protocols, other than somaclonal variation, is

Table 2. The effects of phloroglucinol on apple in vitro shoot formation

Cultivar Treatment Rooting
percentage

Root number
per shoot

Reference

M.9 PG (1284.66 μM) For 38 d 0% 0 James and
Thurbon
(1979)

IBA (9.8 μM) 8% 2.2

PG (1284.66 μM) + IBA
(9.8 μM)

62% 3.6

PG (1284.66 μM) For 4 d prior to culture
on hormone-free medium

5.5% 1.8

IBA (9.8 μM) 30% 4.4

PG (1284.66 μM) + IBA
(9.8 μM)

69% 12.0

Delicious With PG (1 mM) vs. no PG 31% vs. 74% N/A Zimmerman and
Fordham (1985)Royal Red Delicious With PG (1 mM) vs. no PG 15% vs. 45% N/A

Vermont Spur Delicious With PG (1 mM) vs. no PG 20% vs. 60% N/A

Spartan With PG (1 mM) vs. no PG 66% vs. 80% N/A

Redchief Delicious With PG (1 mM) vs. no PG 0% vs. 12% N/A

Redspur Delicious With PG (1 mM) vs. no PG 90% vs. 98% N/A

Gala With PG (1 mM) vs. no PG 97% vs. 100% N/A

Golden Delicious With PG (1 mM) vs. no PG 92% vs. 95% N/A

McIntosh With PG (1 mM) vs. no PG 68% vs. 85% N/A

Spur McIntosh With PG (1 mM) vs. no PG 82% vs. 87% N/A

Mutsu With PG (1 mM) vs. no PG 70% vs. 50% N/A

York Imperial With PG (1 mM) vs. no PG 15% vs. 15% N/A

M.9a PG
(1284.66 μM)

In shooting
medium

In rooting medium Webster and
Jones (1989)

− − 77% N/A

− + 93% N/A

+ − 69% N/A

+ + 93% N/A

Tydeman Early Worcesterb PG (793 μM) In liquid
medium

In solid medium Modgil et al.
(1999)

− − 50% N/A

− + 68% N/A

+ + 64% N/A

MM.106 PG (793 μM) In
shooting
medium

In rooting medium Sharma et al.
(2000)

− − 66% N/A

+ − 81% N/A

− + 53% N/A

+ + 60% N/A

+, presence; −, absence
IBA indole-3-butyric acid, PG phloroglucinol, N/A information not available
a After 21 subcultures
b Shoots were rooted in liquid medium for 9 d followed by on agar-solidified medium
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hyperhydricity. Although there are several methods for
reducing hyperhydricity in plant tissue culture, such as
manipulating the levels of PGRs or ions in the medium
(Wu et al. 2011), manipulation of light conditions or
choice of gelling agent (Ascencio-Cabral et al. 2008), or
choice of culture vessel or CO2-enrichment (Teixeira da
Silva et al. 2005a, b), there are few chemical means for
reducing hyperhydricity.

PG is used to prevent hyperhydricity in micropropagation
by providing precursors which normally are synthesized at
low levels or not synthesized at all in hyperhydric tissues.
Certain enzymes, particularly p-coumarate/CoA ligase,
show significantly less activity in hyperhydric explants
(Phan and Hegedus 1985). Adding phloridzin or its precur-
sor PG to the culture medium for apple and sunflower
shoots prevented hyperhydricity by increasing the activity
of enzymes involved in lignin synthesis (Phan and Hegedus
1985). In that study, the activities of some enzymes involved
in the synthesis of lignin were found to be consistently
lower in hyperhydric plants than in normal plants.

The addition of PG as a precursor in the lignin biosyn-
thesis pathway resulted in the effective control of hyper-
hydricity and maximized the multiplication rate of
Vaccinium corymbosum cultured in liquid medium. When
stained with toluidine blue (O’Brien et al. 1964), cross-
sections of shoots displayed more lignified tissues than the
non-PG control, with xylem development similar to shoots
from semisolid medium (Ross and Castillo 2009). Similar
results were obtained with Achyrocline flaccida, in which
shoots from liquid medium with PG had a narrower pith,
better xylem development, and increased lignification (Ross
and Castillo 2010). Preliminary results obtained with Acca
sellowiana cultured in permanent immersion bioreactors
showed similar results: the addition of PG to the medium
prevented the occurrence of hyperhydric shoots (Ross and
Grasso 2010). PG has also been successfully employed to
prevent hyperhydricity in A. flaccida and V. corymbosum
(Ross 2006).

Phan and Letouze (1982) observed that phenolic com-
pounds were more abundant in normal Prunus avium plants
than in hyperhydric plants. Phenolic production is directly
associated with the C/N ratio and since phenolics influence
lignification, this would explain how the addition of PG and
phloridzin to culture media could help plants undergoing
hyperhydricity to return to a normal state, i.e., reverse
hyperhydricity (Al-Maarri and Al-Ghamdi 2000).

Even though bioreactors have shown potential for the
micropropagation of many plants, the greatest hindrance to
their use is hyperhydricity of the resultant regenerants. The
ability to use PG as an additive to liquid medium in a
bioreactor to increase lignification, improve rooting, and
remove (i.e., reverse or prevent) hyperhydricity would have
massive implications for the mass production of plants.

PG in plant growth and development: possible contrasting
roles. The plant tissue culture literature contains numerous
protocols that describe, in considerable detail, the effective
micropropagation of plant tissues in vitro. That success is
most frequently attributed to the use of specific combinations
of PGRs, gelling agents, light conditions, and a wealth of
other abiotic and biotic factors. Chemical means of manipu-
lating plant growth in vitro, however, remains the most pop-
ular method, and any new resources or chemicals that could
serve the same purpose as the currently used PGRs, would be
advantageous for both industrial and research use. This sec-
tion explores how PG could be used in different capacities to
manipulate growth and development of plant cells or tissues in
vitro, providing an alternative to current methods. Both posi-
tive and negative effects have been described so that the reader
is aware that not all outcomes are necessarily beneficial.

Various phenols are typically added to tissue culture media
mainly to enhance callus growth, form adventitious shoots
more effectively, improve rooting, and increase the rate of
shoot proliferation in certain shoot cultures. Most plant
responses to phenols involve a synergism with auxins, partic-
ularly indole-3-acetic acid (IAA), so it is likely that the mode
of action is dependent on the regulation of internal IAA levels.
Oxidative catabolism of IAA is the chemical modification of
the indole nucleus or side chain that results in the loss of auxin
activity (Normanly et al. 2004). As far as we know, this is the
only truly irreversible step regulating IAA levels. Many
mono-, di-, and tri-hydroxyphenols and their more complex
derivatives found naturally in plant cells are strong reducing
agents that can serve as substrates for oxidative enzymes. This
has led to the following two hypotheses as to their growth
regulatory activity (George et al. 2010):

1. When added exogenously, hydroxyphenols act as alter-
native substrates for oxidative enzymes and may protect
auxin from oxidative breakdown.

2. Morphogenic activity is induced by the products formed
when phenolic compounds such as PG and phloridzin
are oxidized. This hypothesis was advanced by Gur et
al. (1988), who found that PG only promoted rooting in
apple clones with sufficient polyphenol oxidase activity
to cause significant oxidation of the compound.

Phenolic compounds constitute a wide range of plant sub-
stances that are normally viewed as deleterious during in vitro
culture, since their exudation and oxidation cause browning
and necrosis, especially when mature explants of woody
plants are used (Benson 2000; Martin and Madassery 2005;
Reis et al. 2008). However, in several cases, phenolic com-
pounds seem to be essential for the control of some morpho-
genic processes occurring in vitro, indicating that their role is
far from being understood. Examples of the positive effect of
phenolic compounds on morphogenic processes occurring in

PHLOROGLUCINOL IN PLANT TISSUE CULTURE 9



vitro are the stimulation of root formation (Hammatt and
Grant 1997; Romais et al. 2000) and elongation (Ceasar et
al. 2010), shoot proliferation (Sarkar and Naik 2000), shoot
organogenesis (Lorenzo et al. 2001), androgenesis (Delalonde
et al. 1996), and somatic embryogenesis (Hanower and
Hanower 1984; Find et al. 2002).

The structurally related glycoside phloridzin has the same
effect as PG but is heat labile and more expensive.
Phloridzin is metabolized into PG and phloretic acid.
Phloretic acid increased the proportion of apple shoots
which could root (Jones and Hatfield 1976) and led to
elongation of papaya roots in vitro (Ascencio-Cabral et al.
2008), but it was less active than PG, which has occasion-
ally been found to have inhibitory effects (Snir 1983; Kooi
et al. 1999, cited by George et al. 2010).

Consequently, PG and its precursors (such as phloridzin)
or its products of metabolism (such as phloretic acid) have
the potential to influence a wide range of plant growth
processes and development, although it is expected, as for
most other phenolic compounds and PGRs, that excessively
high concentrations would have an inhibitory effect.

1. Somatic embryogenesis. Somatic embryogenesis is of-
ten desirable as somatic embryos represent true clones
of single-cell origin. It is not always possible to obtain
somatic embryogenesis using conventional PGRs or
even manipulation of media or culture-room conditions.
The possibility of utilizing PG as an alternative for
induction of somatic embryogenesis would strongly
benefit plant tissue culture. Adding phloridzin or PG
to medium increased the number of somatic embryos
produced from embryogenic callus of oil palm (Elaeis
guineensis) (Hanower and Hanower 1984, cited by
George et al. 2010). Reis et al. (2008) found that the
inclusion of PG at specific concentrations in the induc-
tion medium increased the levels of somatic embryo-
genic induction in Feijoa sellowiana. When 197.5 μM
PG was added to the culture medium, 94.7% of explants
differentiated embryos, but higher concentrations
strongly inhibited somatic embryo formation.
However, the exact mechanism by which PG promotes
somatic embryogenesis is unclear. According to Reis et
al. (2008), some of the phenolic compounds produced in
the presence of PG might promote somatic embryogen-
esis. Murali et al. (1996) report enhanced somatic em-
bryogenesis in callus cultures of rose (Rosa hybrida
‘Arizona’) petal explants. The addition of PG strongly
promoted the development of somatic embryos into
plantlets: 93% of somatic embryos formed plantlets
with 0.79 mM PG in medium containing 2.69 μM α-
naphthaleneacetic acid (NAA). In a study to improve
the transition from proliferation to maturation in em-
bryogenic cultures of Abies nordmanniana, the addition

of 40 μM PG increased the rate of proliferation in most
cases, but embryo maturation and development was
limited with this treatment (Find et al. 2002). Manjula
et al. (1997) claimed that the addition of PG to medium
controlled the formation of polyphenolics in vitro, lead-
ing to improved callus formation of Aristolochia indica.

Occasionally, PG has shown inhibitory effects. A 50%
inhibition of rooting of sour cherry shoots (Prunus cera-
sus) grown in vitro occurred when 1.28 mM PG was
added to the medium (Snir 1983). In sentag shoots
(Azadirachta excelsa), addition of 1.28 mM PG to the
control medium significantly reduced the rooting percent-
age from 55.5% to 29.4% (Kooi et al. 1999).

PG may act as a bactericide, increasing shoot regener-
ation only in shoot cultures carrying concealed bacterial
infections. However, the stimulatory effect of the com-
pound is now thought to be largely independent of this
effect (Jones and Hopgood 1979; Jones and James 1979).

2. Shoot proliferation. Shoot induction and proliferation is
one of the most commonmeans of mass-producing plants
due to its ease, and it can be achieved through elongation
of either the apical meristem or axillary buds. Improved
shoot proliferation in vitro has been reported for several
species following the inclusion of PG in medium. Sarkar
and Naik (2000) studied the efficacy of PG in promoting
growth and development of in vitro–derived shoot tips in
six potato (Solanum tuberosum L.) genotypes. They
found a significant PG×sucrose interaction for number
of shoots developed per shoot tip (1 shoot per shoot tip in
the control medium without PG, 5.8–8.2 shoots per shoot
tip with PG, depending on genotype), shoot tip fresh
weight, and number of roots induced/shoot tip (from 0
to 0.3–6.1, depending on genotype). Optimum shoot tip
growth was possible in a medium containing 0.8 mM PG
and 0.2 M sucrose. Early bud break and enhanced shoot
regeneration in nodal explants of Vitex negundo was
achieved by supplementing the medium with 0.79 mM
PG and 0.12 mM silver nitrate in addition to 4.44 μMBA
(from 1 shoot/explant in the control to 15 shoots/explant)
(Steephen et al. 2010). Supplementation in the bud induc-
tion medium of Capsicum annuum with 400 μM PG
increased the bud induction response by 17–18%
(Kumar et al. 2005). In these cases, the presence of PG
in the medium allowed for shoot induction and prolifera-
tion without the need for any additional PGRs.

Plantmultiplication of the medicinal plant Arnica mon-
tana was improved (from 1.2 to 3.6 plantlets/explant) on
MS medium containing 0.6 mM PG and 0.2 mM adenine
sulfate (Buthuc-Keul and Deliu 2001). Successful shoot
multiplication ofMinuartia valentina, an endangered and
endemic Spanish plant, was achieved on MS medium
with 0.63 mM PG in combination with either 4.44 μM
6-benzyladenine (BA) or 4.65 μM kinetin. PG improved
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the number of shoots/explant from 1.2 to 2.6 and from 1.4
to 2.5 (for BA and kinetin respectively) and increased
shoot length from 12.4 to 24.1 mm with BA (Ibañez and
Amo-Marco 1998). It seems that PG in combination with
a cytokinin serves to further enhance shoot development
and proliferation. This synergistic effect that PG had on
shoot multiplication was observed by Gururaj et al.
(2004), who found that multiple shoots formed from
single-node explants of Decalepis hamiltonii when BA
and gibberellic acid (GA3) were added to PG-containing
medium. The maximum number of shoots/culture was
observed on medium containing 1.1 μM BA, 5.8 μM
GA3, and 800 μM PG. Subculturing of the shoots onto
MS medium containing 5.6 μM BA, 200 μM PG, and
0.011 μM triacontanol produced elongated shoots and
secondary shoots. The long shoots could be rooted on
medium containing 5.38 μM NAA and 400 μM PG.
Here, too, PG promoted shoot induction and subsequent
rooting when used synergistically with other shoot- or
root-inducing PGRs. A marked stimulatory effect of
1.28 mM PG on shoot number in red raspberry (Rubus
idaeus) ‘Malling Jewel’ was found with all auxin and
cytokinin concentrations evaluated. The medium for op-
timum shoot production contained 4.44 μM BAP and
0.5 μM IBA in the presence of 1.28 mM PG. On average,
the rate of shoot multiplication for all genotypes was
about 6-fold/month when PG was present and about 4-
fold/month in its absence (James et al. 1980).

As indicated by these reports, PG, whether present
alone or combined with other PGRs, overwhelmingly
stimulates shoot induction and subsequent development.

3. Root initiation and development. It is common to find
protocols in which somatic embryos are successfully
induced, but root elongation does not occur. Moreover,
it is not uncommon, especially in woody plants and
hardwood species such as forestry or fruit trees, where
callus tends to form at the base of explants but where
roots are never formed. As indicated above, methods
such as aerated vessels or inclusion of activated char-
coal in medium have been used to stimulate rooting, but
these methods are not always effective. Here again, it
would be advantageous to have another alternative to
evaluate, and PG should be considered. PG added to
rooting media together with auxin will sometimes stim-
ulate rooting. This synergistic effect has been reported
for several ornamental, fruit, and other species.
Hammatt (1994) found that the proportion of shoots
rooting in media containing auxin, or auxin plus PG,
increased with the number of successive subcultures,
but the proportion that rooted with PG alone was unaf-
fected by the number of subcultures. Before the shoots
had become responsive to auxin, 1 mM PG was more
effective than auxin in inducing roots. PG seems to have

a synergistic effect not only during shoot formation, but
also during subsequent root development.

De Klerk et al. (2011) evaluated the effect of phenolic
compounds on root formation from apple stem slices. The
phenolics were added to the rooting medium along with
suboptimal concentrations of IAA (3 μM) or NAA
(0.3μM).When IAAwas used, most phenolics (including
1 mM PG) increased rooting. With NAA, rooting was far
less promoted or even inhibited. The logic of the experi-
ment was to use PG to “compensate” for the suboptimal
levels of auxins by assuming that PG protects auxins from
oxidation. The effects of PG and ferulic acid on a dose–
response curve of IAA and the timing of their action
indicated that both acted as antioxidants, protecting IAA
from decarboxylation and the tissue from oxidative stress.
A 5-fold increase in the maximum number of roots was
achieved with 3 μM IAA and 1 mM PG; IAA oxidation
was reduced from 100% in the control to 21% in the
treatment, resulting in a 44% increase in IAA uptake by
the explants. These authors did not report the effect of PG
used alone in the medium, but the results suggest that IAA
plays a much stronger role than PG in root induction,
although PG serves to enhance the effect of IAA
(Dobránszki and Teixeira da Silva 2010). Indeed, PG is
essential for enhancing root initiation and subsequent
development in the presence of an auxin (IAA or indole-
3-butyric acid [IBA]), confirming the notion that PG is an
auxin promoter, although its effectiveness is strongly
dependent on genotype (Zimmerman 1984; Magyar-
Tábori et al. 2010).

The presence of PG in the rooting medium exerted a
positive effect on rooting of the pear (Pyrus communis)
rootstock BP10030. The magnitude of the effect was
dependent on PG concentration, with the effective range
(0.16–1.28 mM) resulting in 100% rooting. PG concen-
trations outside this range decreased rooting (Wang
1991). Berardi et al. (1993) found that PG alone did not
affect rooting of Pyrus calleryana; however, PG in com-
bination with NAA or IBA promoted the greatest increase
in rooting throughout the acclimatization period.

Sharifian et al. (2009) evaluated the effect of PG on
rooting parameters with micropropagated shoots of three
cultivars of Juglans regia. PG at 0.5 and 1.0 mM in-
creased the rooting percentage, but 1.6- to 10-fold differ-
ences among cultivars were obtained. Ainsley et al.
(2001) found that the effect of PG on in vitro rooting of
almond (Prunus dulcis Mill.) varied depending on the
auxin used for root induction. When shoots were sub-
jected to PG following a 12-h treatment in water–agar
medium containing 1.0 mMNAA, the number of explants
that developed roots decreased significantly (from 40% to
20%), as did the mean root length. Comparatively,
changes in the rooting frequency of shoots cultured for
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12 h in water–agar containing only 1.0 mM IBA (i.e., no
PG) were not significant. Maximum rooting was achieved
by inserting shoots for 12 h into water–agar containing
1.0 mM IBA, followed by 2 wk in half-strength MS
supplemented with 100 μM PG. Under these conditions,
60% of the shoots developed multiple roots.

Rooting of British wild cherry (P. avium L.) was also
improved by the addition of 1 mM PG to the rooting
medium (Hammatt and Grant 1997). With red raspberry,
1.28 mM PG in the presence of IBA synergistically pro-
moted the number of roots per rooted culture but did not
significantly increase the frequency of rooted cultures
(James et al. 1980). An auxin–PG synergism promoted
the rooting of a Rubus hybrid (R. ursinus Cham. and
Schlect×R. idaeus L.) but not the perpetually fruiting
strawberry ‘Gento Hummell’ (a hybrid of Fragaria vir-
giniana Duchesne×Fragaria chiloensis Duchesne). In
strawberry, IBA could be successfully replaced by PG,
but the presence of both IBA and PG reduced rooting
compared with other treatments (James and Thurbon
1979). This indicates that the root-inducing ability of PG
is not universal; rather, it is an experimental parameter
that needs to be tested for individual genotypes.

Root induction in Arnica montana was stimulated by
the addition of maize extract (crushed kernels) (12.2
roots/explant, 3.58 cm in length), PG (10.2 roots/explant,
2.44 cm in length), or PG plus adenine sulfate (13 root-
s/explant, 2.94 cm length), compared to the control (2.4
roots/explant, 1.94 cm in length) (Buthuc-Keul and Deliu
2001). For Arnica montana, PG was not the best enhancer
of rooting, but it was still better than the control (no
additives), supporting the notion that PG is an additional
alternative rather than a substitute for other auxins or
auxin-like substances.

PG was a critical ingredient for the rooting of
Asparagus racemosus, a medicinal plant of high value.
The inclusion of 198.25 μM PG enhanced the rooting
frequency from 41.37% (in the absence of PG) to 85%
(Bopana and Saxena 2008). The same authors achieved
96% rooting within 22 d by culturing the in vitro–formed
shoots of Crataeva magna (a high-value medicinal tree)
on half-strength MS medium with 11.42 μM IAA,
9.8 μM IBA, 0.46 μM kinetin, and 198.25 μM PG
(Bopana and Saxena 2009).

Rooting of Pterocarpus marsupium was most effec-
tively induced using microshoots excised from proliferat-
ing shoot cultures on semisolid hormone-free half-
strength MS medium, after a pulse (dip) treatment for
7 d in half-strength MS liquid medium containing
100 μM IBA and 15.84 μM PG. A maximum frequency
of root formation (70%), highest number (3.8±0.37) of
roots, and maximum root length (3.9±0.05 cm) were
achieved by using the IBA–PG dip (Husain et al. 2008).

Petri and Scorza (2010) enhanced the rooting of regen-
erated shoots of plum cultivar ‘Improved French’ by 53%
by adding 0.79 mM PG to the rooting medium. A stimu-
lating effect of PG on the growth and proliferation of in
vitro ‘M.26’ apple shoots was reported by Jones et al.
(1977); however, James and Thurbon (1981) found that
PG did not increase the number of ‘M.9’ shoots in any of
12 combinations of PGRs evaluated, and with one com-
bination, PG had decreased the number of shoots formed.
Webster and Jones (1989) noted differences in shoot
production on four apple rootstocks. Shoot production
was readily achieved with ‘P.22’ and ‘Ottawa 3’, although
shoot production was less effective with ‘P.2’ and ‘B.9’.
In the case of these latter rootstocks, some improvement
in shoot productionwas achieved on amedium containing
1.28 mM PG, when BA was increased from 4.44 to
8.88 μM, and with a long subculture period. The maxi-
mum shoot number (6.66) and shoot length (2.73 cm) of
‘MM.106’ was observed on shoot proliferation media
supplemented with 0.79 mMPG. Taken together, it seems
that the usefulness of PG for improvement of shoot pro-
liferation depends on genotype, PGR content of the me-
dium, and presumably on the number of subcultures
(Dobránszki and Teixeira da Silva 2010; Magyar-Tábori
et al. 2010). PG treatment (1.0mM) during rooting caused
different rooting responses in scions from 12 apple culti-
vars (Zimmerman and Fordham 1985). Systematic studies
were conducted regarding the effect of PG on in vitro
rooting to enhance the rooting process. PG was able to
increase the rooting percentage (James and Thurbon
1979, 1981; Webster and Jones 1989; Modgil et al.
1999) and also the number of roots/shoots in some but
not in all cultivars (Zimmerman and Fordham 1985;
Sharma et al. 2000). PG also enhanced the effects of
IBA in the rooting medium (James and Thurbon 1979).
Moreover, Sharma et al. (2000) showed the precondition-
ing effect of PG on shoots for subsequent rooting. The
results of studies on the effects of PG on shoot formation
and rooting in apple are summarized in Table 2.

Other growth and developmental responses. PG added at
1% enhanced the recovery and survival of cryopreserved
Dendrobium nobile protocorms when it was used as a cryo-
protectant additive. A 2-fold increase in protocorm survival
was achieved when PG was used in combination with 2 M
glycerol and PVS2 (plant vitrification solution; Sakai et al.
1990; Vendrame and Faria 2011). Interestingly, hyperforin
and adhyperforin, which are PG derivatives found in
Hypericum spp., may have played a part in the success of
recovery of Hypericum perforatum shoot tips from cryo-
preservation (Bruňáková et al. 2011).

Agud et al. (2010) evaluated the effect of PG, either alone
or in combination with PGRs (BA, 2iP, zeatin, NAA), to
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induce tuberization of potato in vitro. They found that PG in
a moderate dose (0.79 mM) in combination with any of the
cytokinins (0.5 mgL−1) resulted in 100% regeneration.
Prevention or reduction of tissue browning by PG in culture
was tested by Kim et al. (2007) with leaf segments of fig tree
(Ficus carica). PG had a beneficial effect, ultimately result-
ing in an increased survival rate and morphogenesis.

Hammond andMahlberg (1994) reported PG to be the only
detectable phenolic component in the glandular trichomes in
Cannabis, suggesting that it may play an important role in the
in vivo enzymatically regulated biogenesis of cannabinoids.

Future Prospects

Plant tissue culture is one of the bulwarks of plant biotech-
nology. As with most fields in this area of study, it is faced
with several limitations and drawbacks that require the
constant search for solutions. In fact, there are very few
plant species for which we can truly say that an excellent,
repeatable in vitro tissue culture protocol exists across dif-
ferent genotypes and for a wide range of explants. Most
plant species require very specific protocols that target spe-
cific genotypes, tissues, or organs. That said, the search for
suitable alternatives to current protocols is one of the main
driving forces in plant tissue culture research. One way of
improving different aspects of organogenesis or morphogen-
esis would be to include a new growth-promoting substance.
Despite being tested in a number of studies, PG is relatively
unknown as a plant growth regulator, and its use in plant
tissue culture has increased only recently (Table 1). The
effects of PG on plant organogenesis have not been uniform;
indeed, there are several exceptions to the overall trends
observed. Overall, however, PG has shown the ability to
stimulate rooting, shoot formation, and somatic embryogen-
esis, sometimes alone and sometimes in combination with
other PGRs. This phenolic compound opens up new ave-
nues for use as a plant growth regulator in clonal propaga-
tion of shoots for short-, medium-, or long-term storage, as
an inducer of rooting to speed up plantlet growth and de-
velopment, and as a means to reduce hyperhydricity and
fortify tissue through lignification in bioreactor systems.
Improved somatic embryogenesis in PG-supplemented me-
dium could allow for a steady supply of robust somatic
embryos for mass production in bioreactors or for synthetic
seed technology (Sharma et al. 2013), and would also pro-
vide a stable supply for genetic transformation studies.
Moreover, transgenic material would have a greater chance
of survival if improved shoot and root formation could be
achieved by the inclusion of PG in regeneration medium.
Finally, with a view to the future, the fact that PG has
already shown success in improving the recovery of cryo-
preserved tissue provides hope for long-term storage of

useful, rare, and important germplasm. Although the road
to fully understanding the mechanism of PG in all of these
developmental events is still in its infancy, this compilation
of information and assessment of trends will allow for more
plant tissue culture scientists to better direct their research
efforts, perhaps now considering PG as an important com-
ponent in their experimental designs.
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