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Abstract This work presents sequential and parallel

evolutionary algorithms (EAs) applied to the scheduling

problem in heterogeneous computing environments, a

NP-hard problem with capital relevance in distributed

computing. These methods have been specifically designed

to provide accurate and efficient solutions by using simple

operators that allow them to be later extended for solving

realistic problem instances arising in distributed hetero-

geneous computing (HC) and grid systems. The EAs were

codified over MALLBA, a general-purpose library for

combinatorial optimization. Efficient numerical results are

reported in the experimental analysis performed on well-

known problem instances. The comparative study of

scheduling methods shows that the parallel versions of the

implemented evolutionary algorithms are able to achieve

high problem solving efficacy, outperforming traditional

scheduling heuristics and also improving over previous

results already reported in the related literature.

Keywords Evolutionary algorithms �
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1 Introduction

Distributed computing environments became popular in

the past decades as a way to provide the needed com-

puting power for solving complex problems. Usually,

distributed computing environments are composed of

many heterogeneous computers able to work coopera-

tively. At a higher level of abstraction, the expression

grid computing denotes the set of distributed computing

techniques that work over a large loosely coupled virtual

supercomputer, formed by many heterogeneous compo-

nents of different characteristics. This infrastructure has

made it feasible to provide pervasive and cost-effective

access to distributed computing resources for solving

problems that demand large computing power (Foster and

Kesselman 1998).

A key problem when using such heterogeneous

computing (HC) systems consists in finding a planning

strategy or scheduling for a set of tasks to be executed.

The goal is to optimally assign the computing resources

by satisfying some efficiency criteria, usually related to

the total execution time or resource utilization. Schedul-

ing problems on homogeneous multiprocessor systems

have been widely studied in operational research, and

numerous methods have been proposed for finding accu-

rate schedules in reasonable times (El-Rewini et al. 1994;

Leung et al. 2004). However, the heterogeneous com-

puting scheduling problem (HCSP) has become important

due the popularization of distributed computing and the

growing use of heterogeneous clusters (Freund et al.

1994; Eshaghian 1996).

Traditional scheduling problems are NP-hard (Garey

and Johnson 1979) and thus classic exact methods are only

useful for solving problem instances of reduced size.

Heuristics and metaheuristics are promising methods for
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solving the HCSP since they are able to get efficient

schedules in reasonable times, even for large problem

instances. Evolutionary algorithms (EAs) have emerged as

flexible and robust metaheuristic methods for solving the

HCSP, achieving the high level of problem solving efficacy

also shown in many other application areas (Bäck et al.

1997). Although they usually require larger execution

times (in the order of a minute) than ad-hoc heuristics, EAs

are able to find accurate solutions, so they are competitive

schedulers for distributed HC and grid systems where large

tasks (with execution times in the order of minutes, hours,

and even days) are submitted to execution. In order to

further improve the efficiency of EAs, parallel implemen-

tations have been employed to enhance and speed up the

search, allowing to reach high-quality results in reasonable

execution times even for hard-to-solve optimization

problems (Alba 2005).

This work presents the application of sequential and

parallel EAs for solving the HCSP. The study is aimed to

analyze the efficacy of EAs to solve a de-facto standard

set of (small-sized) problem instances, by using simple

search operators that allow the methods to scale up in

order to face realistic large problem instances. The main

contributions of the work are to analyze EA techniques

for solving the scheduling problem on distributed hetero-

geneous environments, to apply parallel models that allow

improving the quality of results, and reducing the exe-

cution times, and to provide new state-of-the-art methods

for HC scheduling that can be used as a building block

for scaling to large distributed computing and grid

systems.

The manuscript is structured as follows: The following

section describes the paradigm of evolutionary computa-

tion and introduces the EAs involved in the study. Sec-

tion 3 presents the HCSP formulation, some concepts

about execution time estimation, and reviews previous

works about applying EAs to solve the HCSP and related

variants. Section 4 describes the implementation details of

the sequential and parallel EAs used in the study. The

experimental analysis and the discussion of the results are

presented in Sect. 5, while the conclusions and possible

lines for future work are formulated in Sect. 6.

2 Evolutionary algorithms

EAs are non-deterministic methods that emulate the evo-

lutionary process of species in nature, in order to solve

optimization, search, and other related problems (Davis

1991). In the past 25 years, EAs have been successfully

applied for solving optimization problems underlying

many real applications of high complexity.

The generic schema of an EA is shown in Algorithm 1.

An EA is an iterative technique (each iteration is called a

generation) that applies stochastic operators on a pool of

individuals (the population P) in order to improve their

fitness, a measure related to the objective function. Every

individual in the population is the encoded version of a

tentative solution of the problem. The initial population is

generated by a random method or by using a specific

heuristic for the problem. An evaluation function associates

a fitness value to every individual, indicating its suitability

to the problem. Iteratively, the probabilistic application of

variation operators like the recombination of parts of two

individuals or random changes (mutations) in their contents

are guided by a selection-of-the-best technique to tentative

solutions of higher quality.

The stopping criterion usually involves a fixed number

of generations or execution time, a quality threshold on

the best fitness value, or the detection of a stagnation

situation. Specific policies are used to select the groups of

individuals to recombine (the selection method) and to

determine which new individuals are inserted in the

population in each new generation (the replacement cri-

terion). The EA returns the best solution ever found in the

iterative process, taking into account the fitness function

considered.

2.1 Genetic algorithm

The classic formulation of a GA can be found in Goldberg

(1989). Based on the generic schema of an EA shown in

Algorithm 1, a GA defines selection, recombination, and

mutation operators, applying them to the population of

potential solutions in each generation. In a classic appli-

cation of a GA, the recombination operator is used to

perform the search (exploiting the characteristics of suit-

able individuals), while the mutation is used as the

operator aimed at providing diversity for exploring dif-

ferent zones of the search space. The simplest formulation

(named simple GA) uses the Single Point Crossover (SPX)
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as recombination operator and a mutation operator that

randomly modifies selected positions in the solution

encoding.

2.2 The CHC algorithm

The CHC acronym stands for ‘‘Cross generational elitist

selection, Heterogeneous recombination, and Cataclysmic

mutation’’ (Eshelman 1991). CHC is a specialization of a

traditional GA that uses an elitist selection strategy that

tends to perpetuate the best individuals in the population.

CHC uses a special mating: only those parents which

differ from each other by some number of bits are

allowed to reproduce. The initial threshold for allowing

mating is often set to 1/4 of the chromosome length. If

no offspring is inserted into the new population, this

threshold is reduced by 1. The recombination operator in

CHC is Half Uniform Crossover (HUX), which randomly

swaps exactly half of the bits that differ between the two

parent strings. CHC does not apply mutation; diversity is

provided by applying a re-initialization procedure, using

the best individual found so far as a template for par-

tially creating a new population after convergence is

detected.

Algorithm 2 presents a pseudo-code for the CHC algo-

rithm, showing those features that make it different from

traditional GAs: the highly elitist replacement strategy, the

use of its own HUX recombination operator, the absence of

mutation, which is substituted by a re-initialization opera-

tor, and the use of a mating restriction policy, that does not

allow to recombine a pair of ‘‘too similar’’ individuals

(considering a bit-to-bit distance function).

2.3 Parallel evolutionary algorithms

Parallel implementations became popular in the last decade

as an effort to improve the efficiency of EAs. By splitting

the population into several processing elements, parallel

evolutionary algorithms (PEAs) allow reaching high-

quality results in a reasonable execution time even for

hard-to-solve optimization problems (Alba 2005). The

PEAs proposed in this work are categorized within the

distributed subpopulations model according the classifica-

tion by Alba and Tomassini (2002): the original population

is divided into several subpopulations (demes), separated

geographically from each other. Each deme runs a

sequential EA, so individuals are able to interact only with

other individuals in the deme. An additional migration

operator is defined: occasionally some selected individuals

are exchanged among demes, introducing a new source of

diversity in the EA.

Algorithm 3 shows the generic schema for a distributed

subpopulation PEA. It follows the generic schema of an

EA, but including the pseudocode for the migration

operator. Two conditions control the migration procedure:

sendmigrants determines when the exchange of individuals

takes place, and recvmigrants establishes whether a foreign

set of individuals has to be received or not. Migrants

denotes the set of individuals to exchange with some other

deme, selected according to a given policy. The schema

explicitly distinguishes between selection for reproduction

and selection for migration; they both return a selected

group of individuals to perform the operation, but follow-

ing potentially different policies. The sendmigration and

recvmigration operators carry out the exchange of

individuals among demes according to a connectivity graph

defined over them, most usually a unidirectional ring.

Figure 1 presents a graphic representation of a distributed

subpopulation PEA.

Fig. 1 Distributed subpopulations PEA
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3 Scheduling in heterogeneous environments

This section presents the HCSP mathematical formulation,

some concepts regarding the task execution time estima-

tion, and a review of previous works about applying EAs to

solve the HCSP and related variants.

3.1 HCSP formulation

Let a HC system be composed of many computers, also

called processors or simply machines, and a set of tasks

with variable computing requirements, to be executed on

the system. A task is the atomic unit of workload to be

assigned to a computing resource, so a task cannot be

divided in smaller chunks, nor interrupted after it is

assigned (the scheduling problem follows a non-preemptive

model). The execution times of any individual task vary

from one machine to another, so there will be a competition

among tasks for using those machines able to execute each

task in the minimum time.

Scheduling problems mainly concern about time, trying

to minimize the total time spent to execute all tasks. The

most usual metric to minimize in this model is the makespan,

defined as the time spent from the moment when the first task

begins execution to the moment when the last task is com-

pleted. However, many other performance metrics have

been considered in scheduling problems (Leung et al. 2004).

The following formulation presents the mathematical model

for the HCSP aimed at minimizing the makespan:

– Given an HC system composed of a set of machines

P ¼ fm1;m2; . . .;mMg (dimension M), and a collection

of tasks T ¼ ft1; t2; . . .; tNg (dimension N) to be

executed on the HC system,

– let there be an execution time function ET : P�
T ! Rþ, where ETðti;mjÞ is the time required to

execute the task ti in the machine mj,

– the goal of the HCSP is to find an assignment of tasks

to machines (a function f : TN ! PM) which minimizes

the makespan, defined in Eq. 1.

max
mj2P

X

ti2T :

f ðtiÞ¼mj

ETðti;mjÞ ð1Þ

The previous model does not account for task

dependencies: all tasks can be independently executed,

disregarding the execution order. Even though it is a

simplified version of the more general scheduling problem

that accounts for task dependencies, the independent task

model is specially important in distributed environments

such as supercomputing centers and grid infrastructures.

Independent-task applications frequently appear in many

lines of scientific research, and they are relevant in Single-

Program Multiple-Data (SPMD) applications used for

multimedia processing, data mining, parallel domain

decomposition of numerical models for physical

phenomena, etc. The independent tasks model also arises

when different users submit their (obviously independent)

tasks to execute in a computing service, such as Berkeley’s

BOINC, Xgrid, TeraGrid, EGEE, etc. (Berman et al.

2003), and in parameter sweep applications, structured as

a set of multiple experiments, each one executed with a

different set of parameter values. Thus, the HCSP version

faced in this work is relevant due to its significance in

realistic distributed HC and grid environments.

This work proposes using EAs to solve the static HCSP. A

static scheduler gathers all the available information about

tasks and resources before the execution. The scheduler takes

early decisions, and the task-to-resource assignment is not

allowed to change during the execution. Static schedulers

require an accurate estimation of the execution time for each

task on each machine, which is usually achieved by per-

forming task profiling and statistical analysis of both sub-

mitted workloads and resource utilization. Static scheduling

has its own areas of specific application, such as planning in

distributed clusters and HC multiprocessors, and also ana-

lyzing the resource utilization for a fixed computing hard-

ware. Static scheduling also provides a first step for solving

more complex scheduling problems arising in dynamic

environments: static results can be used as a reference

baseline to determine if a dynamic scheduler is taking the

right decisions on using the available resources in the system.

In addition, an efficient static planner can be the building

block to develop a powerful dynamic scheduler application

capable of dealing with the increasing complexity of grid

infrastructures of nowadays.
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3.2 Execution time estimation

Execution time estimation is a common technique applied

to model the execution time of tasks on a computer since

the early 1990s (Yang et al. 1993). It relies on estimation

methods such as task profiling, benchmarking, and sta-

tistical analysis, in order to provide an accurate prediction

of the execution time of a given task on a specific

machine. Researchers have stated that predicting the task

execution times is useful to guide the resource selection

performed by a scheduling method in HC environments

(Li et al. 2004).

Ali et al. (2000) presented the expected time to compute

(ETC) estimation model, which has been widely used in

the past 9 years. ETC provides an estimation for the exe-

cution time of a collection of tasks in a HC system, taking

into account three key properties: machine heterogeneity,

task heterogeneity, and consistence. Machine heterogeneity

evaluates the variation of execution times for a given task

across the HC resources, while task heterogeneity repre-

sents the variation of the tasks execution times for a given

machine.

The ETC model also considers a second classification.

In a consistent ETC scenario, whenever a given machine mj

executes any task ti faster than other machine mk, then

machine mj executes all tasks faster than machine mk. This

kind of structured scenario captures the reality of many

SPMD applications executing with local input data. An

inconsistent ETC scenario lacks of structure among the

computing requirements of tasks and the computing power

of machines, so that a given machine mj may be faster than

machine mk when executing some tasks and slower for

others. This category represents a generic scenario for a

distributed system composed of highly heterogeneous

resources which receive many kinds of tasks. A semi-

consistent ETC scenario models those inconsistent systems

that include a consistent subsystem. There is not a pre-

defined structure on the whole sets of tasks and machines in

the HC system, but some of them behave like a consistent

HC system.

The HCSP instances used to evaluate the EAs proposed

in this work follow the ETC model by Ali et al. (see details

in Sect. 5.1).

3.3 Related work: EAs for HC scheduling

This subsection presents a brief review of previous works

that have proposed applying EAs to the HCSP and on

related variants of this problem.

The early works on HC scheduling dates from 30 years

ago, when the first ad-hoc deterministic heuristics for HC

scheduling were proposed (Ibarra and Kim 1977; Davis and

Jaffe 1981). The relevance of the HCSP increased in the

1990s due to the emergence of distributed computing, and

the pioneering work on static HC scheduling in multipro-

cessor computers provided a foundation for solving more

complex problem variants. Those seminal works provided

the fist hints on the applicability of EAs to solve the HCSP

and related problems.

Wang et al. (1997) created a line of research in HC

scheduling, since many later works adopted their GA

approach to solve diverse HCSP variants by using an ETC

model. Using a seeding initialization to speed up the

search, the GA by Wang et al. outperformed non-evolu-

tionary heuristics for HCSP instances up to 100 tasks and

20 machines. The parallel GA by Kwok and Ahmad

(1997) outperformed traditional scheduling methods for

random graphs and numerical algorithms with up to 500

tasks in an Intel Paragon with 16 processors, while

achieving almost linear speedup and good scalability.

Grajcar (1999) combined a GA with a local search (LS)

method for mapping an ordered set of tasks to an HC

multiprocessor. The hybrid GA?LS found optimal solu-

tions for instances with up to 96 tasks in short times, but

it failed to find the optimum in large HC systems due to

the lack of information about tasks and the environment

(Grajcar 2001).

A new stage in applying EAs to the HCSP started in

2000, when Abraham et al. (2000) offered a conceptual

description of applying nature-inspired methods to the

HCSP. Later, Braun et al. (2001) presented a systematic

comparison of 11 mapping heuristics for the HCSP,

including a GA and an hybrid combining GA and Simu-

lated Annealing. Both methods were able to obtain the best

makespan values at that time for the HCSP scenarios

studied, while they took benefit from using a seeded ini-

tialization to significantly improve the search. A load-bal-

ancing HCSP variant was faced by Zomaya and Teh (2001)

using a centralized GA, which outperformed the First Fit

heuristic and a random scheduler for instances up to 1,000

tasks and 50 processors. The load-balancing GA scheduler

was effective from a practical point of view, especially

when scheduling a large number of tasks.

Multiple works from Xhafa et al. have explored EAs

applied to the HCSP. Duran and Xhafa (2006) studied a

steady-state GA and the Struggle GA (SGA) for the HCSP.

Both EAs outperformed the previous best makespan results

in more than half of the instances studied, and an improved

version of SGA using a task-resource allocation hash key

obtained accurate results (Xhafa et al. 2008c). Xhafa et al.

(2007) presented two GA schedulers, that achieved fast

makespan reductions for HCSP instances up to 4,096 tasks

and 256 machines. The Memetic Algorithm (MA) by

Xhafa (2007) included subordinate LS methods to find
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high-quality solutions in short times. The hybrid combining

MA and Tabu Search (TS) achieved better results than

previous GAs for the HCSP when using a 100 s stopping

criterion. Two parallel models of MA?TS (Xhafa and

Duran 2008) achieved several performance requirements

on HCSP and grid scheduling. The structured population of

a cellular MA (cMA) was used to control the tradeoff

between the exploitation and exploration of the HCSP

solution space (Xhafa et al. 2008a). Using a seeding ini-

tialization and three LS methods, cMA outperformed pre-

vious GA results for half the instances from Braun et al.

Other relevant works applied non-evolutionary methods

to solve the HCSP. Ritchie and Levine (2004) proposed a

hybrid combining Ant Colony Optimization (ACO) and TS

for the HCSP. The hybrid ACO?TS outperformed pre-

vious makespan results for the HCSP instances by Braun

et al., but it took a long time (over 3.5 h) to complete 1,000

iterations and thus it is not useful for scheduling in HC

and grid environments. Xhafa et al. (2008b) presented a

hierarchic TS that used a seeded initial solution, kept some

elite solutions, and included several aspiration criteria. The

elite solutions and the neighborhood structure were used to

explore the search space, while several diversification

methods were applied. Using a time stopping criterion of

90 s, TS improved over the previous best-known results in

ten HCSP instances by Braun et al.

Many related variants of the HCSP have been faced

using EAs. The GA by Wu et al. (2004) followed an

incremental approach that gradually increases the difficulty

of fitness values until finding an adequate schedule for

precedence-constrained tasks in a multiprocessor system.

However, the experimental analysis only considered four

processors, and while the GA outperformed traditional

scheduling methods in terms of solution quality, it needed

large a population size, so the scalability of the approach

to large problems is compromised. Boyer and Hura

(2005) presented RS, an iterated randomized method for

scheduling dependent tasks in HC systems, based in a

ad-hoc scheduling heuristic that executes in linear order

with respect to the number of tasks and machines. RS

outperformed two GAs and a list scheduling (LSC) tech-

nique for simulated scenarios modeled by large ETC

matrices and real world parallel applications, but failed to

find the most efficient schedules in consistent scenarios

when using a 100 s stopping criterion. The article did not

present numerical results for each scenario; it only reported

the comparative performance of RS against GAs and LSC.

The recent work by Braun et al. (2008) tackled a general

HCSP formulation regarding dependencies, priorities,

deadlines, and versions. The experimental analysis com-

pared two greedy heuristics, a GA, and a steady-state GA

with customized encodings and operators to solve scenarios

with up to eight machines and 2,000 tasks. The results

showed that the steady-state GA performed the best among

the studied heuristics, achieving the best schedules, whose

fitness values were between 65 and 95% of upper bounds

calculated under unrealistic assumptions.

The analysis of the related works shows the large

diversity of proposals on applying EAs and other meta-

heuristics for solving the HCSP and related variants.

Despite the existence of these numerous proposals, there

have been few works studying parallel algorithms, in order

to determine their ability to use the computing power of

large clusters to improve the search. Thus, there is still

room to contribute in this line of research, by studying

highly efficient parallel EA models that use simple opera-

tors, since this kind of methods could provide accurate

solutions, even for large-sized hard-to-solve HCSP

instances.

4 Designing evolutionary algorithms for the HCSP

This section presents two EAs applied to the HCSP: a

traditional GA, and a CHC algorithm in their sequential

and parallel variants. Both methods were designed aiming

at achieving accurate solutions in reduced time, while

providing a good exploration pattern, by using seeding

initialization and special evolutionary operators. The

details are presented in the next subsections, along with the

software library in which the EAs were implemented.

4.1 Problem encoding

Two main alternatives have been proposed in the related

literature for encoding HCSP solutions when dealing with

independent tasks: the task-oriented encoding and the

machine-oriented encoding.

The task-oriented encoding uses a vector of machine

identifiers to represent the task-to-resource assignment, as

it is presented in Fig. 2. The one-dimension vector has N

elements, where the presence of mj in the position ti means

Fig. 2 Task oriented encoding
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that the task ti is scheduled to execute on machine mj. The

task-oriented encoding is a direct representation for

schedules that allows applying simple exploration opera-

tors based on moving and swapping tasks. However, after

applying a move or swap operator, the task-oriented

encoding does not provide an easy way to evaluate the

changes on efficiency metrics of the whole schedule (such

as makespan, flowtime or resource utilization). When using

the task-oriented encoding, any single change on a task

assignment forces to reevaluate the schedule metric.

The machine-oriented encoding uses a 2D structure in

order to represent the group of tasks scheduled to execute

on each machine mj. Figure 3 presents an example of the

machine-oriented encoding, showing for each machine mj

the list of tasks tk assigned to it. The machine-oriented

encoding provides an efficient way for performing explo-

ration operators based on moving and swapping tasks,

since it is able to store specific values of efficiency metrics

for each machine (such as the local makespan). So, any

single change on a task assignment does not imply

reevaluating the schedule metric.

Both encodings were studied in the EAs proposed in this

work. The prototype implementations of traditional GA

and CHC methods used the task-oriented encoding, in

order to provide a simple method for analyzing the effi-

ciency of EAs for solving the HCSP. In a second stage, the

machine-oriented encoding was adopted, trying to improve

the efficiency of the makespan calculation. Those improved

GA and CHC versions allow to store the local makespan

values, significantly enhancing the computational effi-

ciency of the search. The parallel GA and CHC versions

use the machine-oriented encoding in order to further

improve the computational efficiency of the search.

4.2 The MALLBA library

MALLBA (Alba et al. 2002) is a library of algorithms for

optimization that can deal with parallelism (on a Local

Area Network (LAN) or on a Wide Area Network (WAN)),

in a user-friendly and, at the same time, efficient manner.

The EAs described in this section are implemented as

generic templates on the library as software skeletons, to be

instantiated with the features of the problem by the user.

They incorporate all the knowledge related to the resolu-

tion method, its interactions with the problem, and the

parallel considerations. Skeletons are implemented by a set

of required and provided C?? classes that represent an

abstraction of the entities participating in the resolution

method:

– The provided classes implement internal aspects of the

solver in a problem-independent way. The most

important provided classes are Solver (the algorithm)

and SetUpParams (setup parameters).

– The required classes specify information specifically

related to the problem. Each solver includes the

required classes Problem and Solution, that

encapsulate the problem-dependent entities needed by

the resolution method. Depending on the algorithm,

other classes may be required.

MALLBA is available at University of Málaga website

http://neo.lcc.uma.es/mallba/easy-mallba. MALLBA allowed

a quick coding of different algorithmic prototypes to cope

with the inherent difficulties of the HCSP.

4.3 Implementation details of the proposed EAs

This subsection presents the implementation details of the

studied methods, describing the initialization, recombina-

tion, mutation, and reinitialization used in GA and CHC

sequential, and parallel versions.

4.3.1 Initialization

Numerous methods have been proposed to generate the

population in the related works on applying EAs to the

HCSP. Many of them employed specific heuristics to start

the evolutionary search from a set of useful suboptimal

schedules. The EAs proposed in this work use the strategy

of seeding the initial population using a randomized ver-

sion of the Min–Min heuristic, following previous

approaches by Braun et al. (2001), Xhafa et al. (2007), and

others.Fig. 3 Machine oriented encoding
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Min–Min starts with a set U of all unmapped tasks,

calculates the minimum completion time (MCT) for each

task in U for each machine, and assigns the task with the

minimum overall MCT to the best machine. The mapped

task is removed from U, and the process is repeated until all

tasks are mapped. Min–Min considers the unmapped tasks

sorted by MCT, and the availability status of the machines

are updated by the least possible amount of time for every

assignment. This procedure leads to balanced schedules and

generally also allows finding smaller makespan values than

other heuristics, since more tasks are expected to be

assigned to the machines that complete them the earliest.

The Min–Min strategy has been identified as an efficient

method for finding accurate schedules for small size HCSP

instances (Braun et al. 2001), and also for ETC matrices

with reasonable heterogeneity variations (Luo et al. 2007).

The initialization operator used in the proposed EAs

follows the general procedure of the Min–Min heuristic,

but only for assigning a random number of tasks, while the

remaining tasks are assigned using a load balancing

strategy.

4.3.2 Exploitation: recombination

The classic GA uses Single Point Crossover (SPX) to

recombine the characteristics of two solutions. SPX is

directly applied when using the task-oriented encoding,

since cutting two schedule encodings and swapping the

corresponding alleles (tasks-to-machine assignments) from

one parent to another always produces feasible solutions.

When using the machine-oriented encoding, SPX works

selecting a cutting point and after that each task from one

parent is swapped to the corresponding machine in the

other parent.

CHC uses HUX to recombine characteristics of two

solutions. When using the task-oriented encoding, the

HUX implementation is straightforward: for each task, the

corresponding machine in each offspring is chosen with

uniform probability between the two machines for that task

on the parents’ encoding. When using the machine-oriented

encoding, each task from one parent is swapped with the

corresponding machine in the other parent with a proba-

bility of 0.5.

4.3.3 Exploration: mutation and reinitialization

Both the mutation (GA) and reinitialization (CHC) are

random operators that perform small perturbations in a

given schedule, aimed at providing diversity to the

population, to avoid the search to get stuck in local

optima. These operators explore simple moves and swaps

of tasks between two machines, selecting with high

probability the machines with highest and lowest local

makespan (heavy and light, respectively). The GA

applies the mutation operator on selected individuals

along the evolutionary search, while CHC applies the

reinitialization using the best individual found so far as a

template for creating a new population after convergence

is detected.

The mutation and reinitialization operators cyclically

perform a maximum number of MAX_TRIALS move-and-

swap task operators, which include

– Move a randomly selected task (selecting the longest

task with a probability of 0.5) from heavy to light.

– Move the longest task from heavy to the suitable

machine (the machine which executes that task in

minimum time).

– Move into light the best task (the task with the

lowest execution time for that machine).

– Select a task from heavy (selecting the longest task

with a probability of 0.5), then search the best machine

to move it to.

Each time that a task is moved from a source machine to

a destination machine, a swap between destination and

source is randomly applied with a probability of 0.5.

Unlike previous exploration operators for the HCSP pre-

sented in related works by Xhafa et al. Xhafa et al. (2006,

2007), none of the foregoing operators imply exploring the

Oðn2Þ possible swaps, not even exploring the OðnÞ possible

task movements. The exploration operators used in the

proposed EAs are all performed in sub-linear complexity

order with respect to both the number of tasks and the

number of machines in each HCSP instance. This feature

allows the EAs to have a good scalability behavior when

applied to solve large HCSP and grid scheduling problem

instances.

The pseudo-code of the mutation and reinitialization

operators for the HCSP is presented in Algorithm 4. In

order to further improve the schedules, a rebalancing

operator is randomly applied with probability 0.5 after

performing the mutation operator. This operator was

designed in order to fill the gap on local makespan between

the heavy machine and the light machine, by performing

task moves between them while it is possible, trying to

balance the load in the schedule.
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5 Experimental analysis

This section introduces the set of HCSP instances and the

computational platform used for the experimental evalu-

ation of the proposed EAs. After that, the parameter setting

experiments for the algorithms are commented. The last

subsection presents and analyzes the experimental results

for sequential and parallel versions of the applied EAs. It

presents numerical results, a comparison with other tech-

niques and lower bounds, and a statistical analysis on the

results improvements. In addition, the analysis of the

makespan evolution and the execution time is presented for

representative executions of parallel CHC. Finally, a scal-

ability analysis studies the behavior of parallel CHC when

solving large-sized HCSP instances.

5.1 HCSP instances

Although the research community has faced the HCSP in

the past, there has been little effort to define standardized

problem benchmarks or test suites. Braun et al. (2001)

presented a test suite of 12 instances generated using the

ETC model. All the instances have 512 tasks and 16

machines, and they combine the three ETC model

properties (task and machine heterogeneity, and consis-

tency) in order to model several problem scenarios. The

12 instances by Braun et al. have become a de facto

standard benchmark suite for evaluating algorithms for

solving the HCSP.

The name of HCSP instances by Braun et al. has the

pattern d_c_MHTH.0, where d indicates the distribution

function used to generate the ETC values (u, for the uni-

form distribution), and c indicates the consistency type

(c for consistent, i for inconsistent, and s for semiconsis-

tent). MH and TH indicate the heterogeneity level for tasks

and machines, respectively (lo for low heterogeneity, and

hi for high heterogeneity). The final number after the dot

(0) refers to the number of test cases (initially, several

suites were generated, but only the class 0 gained

popularity).

5.2 Development and execution platform

The EAs were implemented in C??, using the MALLBA

library. The experimental analysis was performed on a

cluster of 4 Dell PowerEdge servers, with QuadCore Xeon

E5430 processors at 2.66 GHz, 8GB RAM, connected with a

Gigabit Ethernet LAN and the CentOS Linux 5.2 operating

system (cluster website: http://www.fing.edu.uy/cluster).

5.3 Parameter settings

The EAs studied in this work used a 90-s execution time

stopping criterion, following the previous works by Xhafa

et al. (2007, 2008a, b). This time limit can be considered

too high for scheduling short tasks in small multiprocessors,

but it is an efficient time for scheduling in realistic dis-

tributed HC and grid infrastructures such as volunteer-

computing platforms, distributed databases, etc., where

large tasks—with execution times in the order of minutes,

hours, and even days—are submitted to execution.

Instead of fixing an arbitrary set of parameters, an initial

configuration analysis was performed for determining the

best parameter values for each operator in the sequential

GA and CHC variants. The parameter setting analysis was

performed using a subset of three problems with diverse
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characteristics (u_i_hilo.0, u_c_hihi.0, and

u_s_lohi.0). The studied parameters included popula-

tion size, crossover probability (pC), mutation probability

(pM) in GA, and percentage of the population involved in

the reinitialization (pR) in CHC. The candidate values for

the parameters were

– Population size, in GA and CHC: 60, 120, 200.

– Crossover probability, in GA and CHC: 0.5, 0.7, 0.9.

– Mutation probability, in GA: 0.01, 0.05, 0.1.

– Percentage of reinitialization, in CHC: 0.4, 0.6, 0.8.

In the parameters setting experiments, the best make-

span results were obtained when using the following

parameter configurations:

– GA: population size: 120, pC: 0.7, pM: 0.1.

– CHC: population size: 120, pC: 0.7, pR: 0.6.

Figures 4 and 5 present an example of the results

obtained in a representative execution of the configuration

setting experiments. The graphics report the average

makespan values achieved for each combination of pC and

pM (or pR) in 20 executions of GA and CHC for solving the

problem instance u_i_hilo.0, when using the stopping

criterion of 90 s and a population size of 120 individuals.

The parameter configuration results demonstrate the

importance of the mutation and reinitialization operators to

achieve highly accurate solutions in short execution times:

the best results are obtained when using (unusual) high

mutation probability (in GA) and percentage of reinitial-

ization (in CHC). In addition, no significant improvements

were detected in the makespan values obtained by the

sequential algorithms when increasing the population size

from 120 to 200, suggesting that working with a larger

population is not beneficial for the EAs: the processing

time increases, thus conspiring against quickly achieving

accurate results.

The parallel EAs use a migration operator that con-

siders the demes connected in a unidirectional ring

topology. The best results were achieved when using

eight subpopulations and employing an elitist selection for

migration policy that exchanges the best two individuals

between demes. The parameter setting analysis showed no

significant makespan variations when changing the

migration frequency, so the EAs use a migration fre-

quency of 500 generations, trying to achieve a balance

between providing diversity and reducing the time spent

in communications.

Additional experiments were performed in order to find

adequate values for the probabilities in the mutation and

reinitialization operators. After performing the configura-

tion analysis, the value of HEAVY_MACH (the probability

of selecting the machine with the largest local makespan)

was fixed at 0.7, and the value of MAX_TRIALS (number

of attempts to find a better solution before accepting a

worse one) was set at five.

5.4 Empirical analysis

This subsection presents the experimental results of applying

the studied sequential and parallel EAs to solve the HCSP

instances from Braun et al. Considerable effort has been

made in this work to design accurate EAs for the HCSP, able

to improve over the previously designed metaheuristics for

this problem set. A comparison with both lower bounds and

results obtained with other metaheuristics, a study of the

fitness evolution and execution time, and a scalability anal-

ysis are also presented in this subsection.

5.4.1 Sequential algorithms

The results achieved using the sequential versions of GA

and CHC are presented in Table 1. The table shows the

best, average, and standard deviations (r) on the makespan

Fig. 5 CHC parameter setting sample (u_i_hilo.0)

Fig. 4 GA parameter setting sample (u_i_hilo.0)
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values achieved in 30 independent executions of GA and

CHC for solving each of the 12 problem instances studied.

The analysis of Table 1 indicates that CHC systemati-

cally achieved better results than GA for nine out of twelve

problem instances studied (GA only obtained better

makespan values for u_c_lohi.0, u_i_hilo.0, and

u_s_hilo.0). These results suggest that the CHC evo-

lutionary model (using HUX, diversity preservation, and

population reinitialization), is a promising strategy for

solving the HCSP when compared with a traditional GA

model.

The results obtained using both sequential EAs outper-

formed previous results achieved with evolutionary tech-

niques for inconsistent and semi-consistent problem

instances. However, the sequential methods were not able

to achieve the best makespan results formerly known for

the problem instances from Braun et al., published in

Ritchie and Levine (2004) and Xhafa et al. (2008b).

5.4.2 Parallel algorithms

The results achieved using the parallel versions of GA and

CHC are presented in Table 2. The table shows the best,

average, and standard deviations (r) on the makespan values

computed in 30 independent executions of GA and CHC for

solving each of the twelve problem instances studied.

The comparison of Tables 1 and 2 shows that the parallel

models of EAs are able to significantly improve over the

Table 1 Results of sequential EAs for the HCSP

Instance GA CHC

Best Avg. r (%) Best Avg. r (%)

u_c_hihi.0 7,659,878.7 7,699,080.1 0.41 7,599,288.4 7,681,050.1 0.55

u_c_hilo.0 155,092.0 155,300.1 0.11 154,947.0 155,333.4 0.19

u_c_lohi.0 250,511.8 252,568.7 0.56 251,194.3 251,868.3 0.22

u_c_lolo.0 5,239.1 5,248.6 0.16 5,225.9 5,241.9 0.20

u_i_hihi.0 3,019,844.3 3,030,564.2 0.22 3,015,048.5 3,024,904.9 0.30

u_i_hilo.0 74,142.9 74,568.4 0.41 74,240.9 74,375.9 0.12

u_i_lohi.0 104,688.0 105,048.1 0.31 104,546.0 104,939.1 0.32

u_i_lolo.0 2,577.0 2,587.8 0.46 2,576.7 2,582.2 0.13

u_s_hihi.0 4,332,248.2 4,347,835.5 0.38 4,299,146.3 4,320,803.4 0.52

u_s_hilo.0 97,630.1 98,026.1 0.41 97,888.2 98,307.4 0.27

u_s_lohi.0 126,438.0 126,840.8 0.25 126,238.0 126,580.4 0.20

u_s_lolo.0 3,510.4 3,516.5 0.23 3,492.1 3,505.0 0.25

Bold values are the best results obtained in each experiment

Table 2 Results of parallel EAs for the HCSP

Instance Parallel GA Parallel CHC

Best Avg. r (%) Best Avg. r (%)

u_c_hihi.0 7,577,921.9 7,606,613.0 0.29 7,461,819.1 7,481,194.5 0.26

u_c_hilo.0 154,915.0 155,036.5 0.06 153,791.9 153,924.0 0.06

u_c_lohi.0 248,772.4 249,687.9 0.33 241,513.2 243,446.3 0.29

u_c_lolo.0 5,208.3 5,224.7 0.17 5,177.5 5,181.6 0.07

u_i_hihi.0 2,990,517.8 3,002,119.3 0.25 2,952,493.2 2,956,905.7 0.21

u_i_hilo.0 74,030.3 74,102.8 0.21 73,639.8 73,847.1 0.13

u_i_lohi.0 103,516.0 104,078.6 0.34 102,123.1 102,677.3 0.30

u_i_lolo.0 2,575.4 2,577.0 0.12 2,548.9 2,557.2 0.11

u_s_hihi.0 4,262,337.5 4,282,920.5 0.25 4,198,779.5 4,239,146.3 0.36

u_s_hilo.0 97,505.5 97,585.5 0.05 96,623.3 96,750.3 0.13

u_s_lohi.0 125,717.0 126,100.1 0.22 123,236.9 123,989.4 0.24

u_s_lolo.0 3,480.3 3,487.2 0.11 3,450.1 3,472.2 0.13

Bold values are the best results obtained in each experiment
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results of the sequential algorithms (achieving up to 4% of

improvement factor for u_c_lohi.0). The parallel algo-

rithms take advantage of the multiple search pattern and the

increased diversity provided by the subpopulation model to

improve the evolutionary search. In addition, since they

work with a reduced population, the parallel EAs have a

more focused processing capability, which allows them to

achieve highly accurate results when using the predefined

effort stopping criteria of 90 s of execution time. The stan-

dard deviation of the makespan values are very small, well

below 0.5%, demonstrating a high robustness behavior when

solving the HCSP. It can be expected that the parallel EAs

will find accurate schedules in any single execution for

HCSP scenarios that follow the ETC model by Ali et al.

(2000).

Table 3 shows the percentage of improvement factors

(imp.) obtained when using the parallel CHC over the other

studied methods. The Kruskal–Wallis test was performed

to analyze the time distributions reported in Tables 1 and 2,

and the correspondent p values are presented for each

problem instance and each pairwise algorithm comparison.

The parallel CHC makespan values significantly

improve over the results achieved with the other studied

EAs, and the computed p values are very small, so the

improvements can be considered as statistically significant.

5.4.3 Comparison against the Min–Min heuristic

Table 4 compares the results obtained with the parallel

CHC—the best method among the studied in this work—

and the Min–Min heuristic, used to define the random

initialization procedure in the proposed EAs.

Table 4 shows that parallel CHC obtained significant

improvements with respect to the Min–Min makespan

values (between 4.85 and 18.63%). The averaged make-

span improvements were 8.51% for consistent instances,

12.14% for inconsistent instances, and 11.32% for semi-

consistent instances. The overall makespan improvement

was 10.66% with respect to the Min–Min results. Parallel

CHC achieved significant larger improvements for sce-

narios with high task heterogeneity (average improvement:

14.28%) than for scenarios with high low heterogeneity

(average improvement: 7.04%), suggesting that the method

is well suited for scheduling in highly heterogeneous

environments.

5.4.4 Comparison with lower bounds

The (non-preemptive) HSCP cannot be solved in reasonable

execution times using exact methods, due to its high

computational complexity. However, a lower bound for the

makespan value can be computed by solving the linear

relaxation for the preemptive problem version. Under the

preemption hypothesis, the scheduler can temporarily

interrupt a task, and continue its execution at a later time,

without additional costs for the context switch procedure.

In this (unrealistic) situation, an optimal solution has all

machines with the same value of local makespan, which

corresponds to the (optimum) global makespan of the

schedule. This linear relaxation was solved using GLPSOL,

the linear programming solver included in GLPK, the GNU

Linear Programming Kit (Makhorin 2006), for the twelve

problem instances studied.

The computed lower bounds are useful to determine the

accuracy of the results achieved using the EAs proposed in

this work.

Table 3 Improvement factors when using parallel CHC

Instance GA CHC parallel GA

imp.

(%)

p value imp.

(%)

p value imp.

(%)

p value

u_c_hihi.0 2.65 \10�4 1.84 \10�4 1.56 \10�4

u_c_hilo.0 0.85 1� 10�4 0.75 6� 10�3 0.73 5� 10�3

u_c_lohi.0 3.73 \10�4 4.01 \10�4 3.01 \10�4

u_c_lolo.0 1.19 \10�4 0.93 1� 10�4 0.59 3� 10�3

u_i_hihi.0 2.28 \10�4 2.12 \10�4 1.29 1:10�4

u_i_hilo.0 0.68 7� 10�3 0.82 1� 10�4 0.53 4� 10�3

u_i_lohi.0 2.51 \10�4 2.37 \10�4 1.36 \10�4

u_i_lolo.0 1.10 \10�4 1.09 \10�4 1.04 \10�4

u_s_hihi.0 3.18 \10�4 2.39 \10�4 1.51 \10�4

u_s_hilo.0 1.04 \10�4 1.31 \10�4 0.91 2� 10�4

u_s_lohi.0 2.60 \10�4 2.44 \10�4 2.01 \10�4

u_s_lolo.0 1.75 \10�4 1.22 \10�4 0.88 2� 10�4

Table 4 Comparison of parallel CHC and Min–Min results

Instance Min–Min Parallel CHC imp.

Avg. Best Avg.

(%)

Best

(%)

u_c_hihi.0 8,460,674.0 7,481,195.0 7,461,819.1 11.58 11.81

u_c_hilo.0 161,805.4 153,924.8 153,791.9 4.87 4.95

u_c_lohi.0 275,837.3 245,163.3 241,513.2 11.12 12.44

u_c_lolo.0 5,441.4 5,181.6 5,177.5 4.77 4.85

u_i_hihi.0 3,513,919.3 2,956,906.0 2,952,493.2 15.85 15.98

u_i_hilo.0 80,755.7 73,847.1 73,639.8 8.55 8.81

u_i_lohi.0 120,517.7 102,123.1 102,123.1 15.26 15.26

u_i_lolo.0 2,785.6 2,559.0 2,548.9 8.14 8.50

u_s_hihi.0 5,160,343.0 4,259,146.1 4,198,779.5 17.46 18.63

u_s_hilo.0 104,375.2 96,750.3 96,623.3 7.31 7.43

u_s_lohi.0 140,284.5 124,760.7 123,236.9 11.07 12.15

u_s_lolo.0 3,806.8 3,476.4 3,450.1 8.68 9.37

Bold values are the best results obtained in each experiment
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Table 5 shows a comparison between the average and

best results achieved by parallel CHC—the best algorithm

among the studied methods—and the lower bounds (LB)

computed for the preemptive case. The table also reports

the relative gap value of the best and average results

achieved for each problem instance with respect to the

correspondent lower bound (defined by Eq. 2).

GAP ¼ result� LB

LB
ð2Þ

The makespan values reported in Table 5 show that

parallel CHC was able to achieve accurate results when

compared with the (in the general case, unattainable) lower

bounds for the preemptive case. The gaps were below 3.5%

for all instances, and below 2% for ten of the twelve

instances studied, suggesting that there is a small difference

between the obtained results and the optimal makespan

value for each problem instance.

The comparison against the results obtained with Min–

Min and the computed LB for the preemptive case dem-

onstrate that parallel CHC was able to achieve more than

80% of the ideal improvement for the studied HCSP sce-

narios. Figure 6 summarizes the results, showing the

improvements obtained by parallel CHC with respect to

both the Min–Min results and the ideal improvements

considering the computed lower bounds.

5.4.5 Comparison against other metaheuristics

Table 6 presents a comparison among the best results

achieved for the set of instances from Braun et al.,

reporting the best results previously found with diverse

metaheuristic techniques and those obtained with the

parallel CHC, the best method among the studied in this

work.Fig. 6 Parallel CHC improvements with respect to Min–Min and LB

Table 6 Comparative results: metaheuristics for the HCSP

Instance GA (Braun et al.) GA (Xhafa et al.) MA?TS

(Xhafa)

cMA (Xhafa

et al.)

ACO?TS

(Ritchie, Levine)

TS (Xhafa

et al.)

Parallel CHC

(this work)

u_c_hihi.0 8,050,844.5 7,610,176.7 7,530,020.2 7,700,929.8 7,497,200.9 7,448,640.5 7,461,819.1

u_c_hilo.0 156,249.2 155,251.2 153,917.2 155,334.8 154,234.6 153,263.3 153,791.9

u_c_lohi.0 258,756.8 248,466.8 245,288.9 251,360.2 244,097.3 241,672.7 241,513.2

u_c_lolo.0 5,272.3 5,227.0 5,173.7 5,218.2 5,178.4 5,155.0 5,177.5

u_i_hihi.0 3,104,762.5 3,077,705.8 3,058,474.9 3,186,664.7 2,947,754.1 2,957,854.1 2,952,493.2

u_i_hilo.0 75,816.1 75,924.0 75,108.5 75,856.6 73,776.2 73,692.9 73,639.8

u_i_lohi.0 107,500.7 106,069.1 105,808.6 110,620.8 102,445.8 103,865.7 102,123.1

u_i_lolo.0 2,614.4 2,613.1 2,596.6 2,624.2 2,553.5 2,552.1 2,548.9

u_s_hihi.0 4,566,206.0 4,359,312.6 4,321,015.4 4,424,540.9 4,162,547.9 4,168,795.9 4,198,779.5

u_s_hilo.0 98,519.4 98,334.6 97,177.3 98,283.7 96,762.0 96,180.9 96,623.3

u_s_lohi.0 130,616.5 127,641.9 127,633.0 130,014.5 123,922.0 123,407.4 123,236.9

u_s_lolo.0 3,583.4 3,515.5 3,484.1 3,522.1 3,455.2 3,450.5 3,450.1

Bold values are the best results obtained in each experiment

Table 5 Comparison with the lower bounds for the preemptive case

Instance Parallel CHC LB GAP

Avg. Best Avg.

(%)

Best

(%)

u_c_hihi.0 7,481,194.5 7,461,819.1 7,346,524.2 1.83 1.57

u_c_hilo.0 153,924.0 153,791.9 152,700.4 0.80 0.71

u_c_lohi.0 245,163.0 241,513.2 238,138.1 2.95 1.42

u_c_lolo.0 5,181.6 5,177.5 5,132.8 0.95 0.87

u_i_hihi.0 2,956,905.7 2,952,493.2 2,909,326.6 1.64 1.48

u_i_hilo.0 73,847.1 73,639.8 73,057.9 1.08 0.80

u_i_lohi.0 102,677.3 102,123.1 101,063.4 1.60 1.05

u_i_lolo.0 2,559.0 2,548.9 2,529.0 1.19 0.79

u_s_hihi.0 4,259,146.3 4,198,779.5 4,063,563.7 4.81 3.33

u_s_hilo.0 96,750.3 96,623.3 95,419.0 1.40 1.26

u_s_lohi.0 124,760.0 123,236.9 120,452.3 3.58 2.31

u_s_lolo.0 3,476.4 3,450.1 3,414.8 1.80 1.03
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The comparison with the ACO?TS from Ritchie and

Levine (2004) and the TS from Xhafa et al. (2008b) is

specially relevant, since those methods have obtained the

previous best known makespan results to date for the HCSP

instances studied.

The analysis of Table 6 shows that the parallel CHC

method outperformed the ACO?TS by Ritchie and Levine

(2004) in ten out of twelve HCSP instances and it also out-

performed the TS by Xhafa et al. (2008b) in seven out of

twelve HCSP instances. In addition, the parallel CHC was

able to achieve schedules with better makespan values than

the previously best-known solutions in six problem instances

(the correspondent best makespan values are marked in bold

in Table 6). The solutions (schedules) with the lowest

makespan values obtained using parallel CHC for each

problem instance are publicly reported in the HCSP website

http://www.fing.edu.uy/inco/cecal/hpc/HCS.

Table 7 summarizes the information about whether the

parallel CHC algorithm improves over the previous best-

known methods, and it also states when the parallel CHC

achieves a best known solution for each HCSP instance

studied.

5.4.6 Fitness evolution and execution time

This subsection analyzes the fitness evolution and the

trade-off between the solution quality obtained using par-

allel CHC and the required execution time. Table 8 pre-

sents the evolution of the makespan values when using 10,

30, and 60 s of execution time (the values correspond to

average makespan results obtained in ten twenty execu-

tions of parallel CHC) for three representative scenarios

with high task heterogeneity. The average improvements

over the Min–Min results are also presented.

Table 8 shows that despite starting from worse solutions

than the one computed by Min–Min, parallel CHC is able

to find well-suited schedules in a short time.

For inconsistent instances, 10 s are enough to achieve 6%

of makespan improvement, while for consistent and semi-

consistent instances, 30 s are required to obtain more than

7% of improvement. When using 60 s of execution time,

parallel CHC obtains an improvement of over 10% for all

scenarios (and almost 15% for inconsistent instances). These

results can be further improved by seeding the population

with the full solution computed by the Min–Min heuristic.

Figures 7 and 8 show the evolution of the best makespan

values observed for the CHC algorithms during represen-

tative executions over u_i_hihi.0 and u_s_lohi.0

(the makespan value of the Min–Min solution is included

as a reference baseline). The slope of the curves show that

the parallel model allows computing accurate schedules

faster than the sequential CHC, which works slower when

compared with the parallel CHC. The same behavior was

verified for the parallel GA. These results confirm the

Table 7 Parallel CHC comparative results

Instance Parallel CHC

Is better than Achieves a best

known solution
ACO?TS

(Ritchie, Levine)

TS (Xhafa

et al.)

u_c_hihi.0 YES NO NO

u_c_hilo.0 YES NO NO

u_c_lohi.0 YES YES YES

u_c_lolo.0 YES NO NO

u_i_hihi.0 NO YES NO

u_i_hilo.0 YES YES YES

u_i_lohi.0 YES YES YES

u_i_lolo.0 YES YES YES

u_s_hihi.0 NO NO NO

u_s_hilo.0 YES NO NO

u_s_lohi.0 YES YES YES

u_s_lolo.0 YES YES YES

TOTAL 10/12 7/12 6/12

Bold values are the best results obtained in each experiment

Table 8 Trade-off between solution quality and execution time

Instance Min–Min Parallel CHC

10 s 30 s 60 s

u_c_lohi.0 275,837.3 285,717.4 254,394.6 245,213.7

u_i_hihi.0 3,513,919.3 3,306,819.0 3,042,056.3 2,990,121.8

u_s_lohi.0 140,284.5 144,902.7 130,109.2 126,219.3

Instance Min–Min Improvement (%)

10 s 30 s 60 s

u_c_lohi.0 -3.6 7.77 11.10

u_i_hihi.0 5.9 13.43 14.91

u_s_lohi.0 -3.3 7.25 10.03

Fig. 7 Makespan evolution for CHC algorithms on u_i_hihi.0
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ability of parallel EAs to obtain more accurate solutions

than the sequential methods and also to reduce the required

computing times.

5.4.7 Scalability analysis

This subsection presents a study of the parallel CHC scal-

ability when solving large problem scenarios. In order to

perform the study, three inconsistent HCSP instances with

high task and machine heterogeneity were designed fol-

lowing the methodology proposed by Ali et al. (2000) for

creating ETC matrices to model HC scenarios. These

instances were selected since they represent the most

general class of distributed HC systems, while they also

have been characterized as ‘‘the most difficult instances

to solve’’ by Xhafa et al. (2007). The HCSP instances

considered in the scalability analysis have a dimen-

sion of (tasks 9 machines) 1;024� 32; 2;048� 64; and

4;096� 128.

Table 9 presents the best and average results obtained in

30 independent executions of the parallel CHC method for

solving the large dimension inconsistent HCSP instances

(the results for the u_i_hihi.0 HCSP instance with

dimension 512� 16 are included in the table for compar-

ative purposes). There have been no previous works solv-

ing the proposed large HCSP instances, so the parallel

CHC results are compared with those achieved by the Min–

Min deterministic heuristic. The improvements (in per-

centage) achieved by the best results obtained with parallel

CHC over the Min–Min results are presented in the last

column of the table for each problem instance.

The results presented in Table 9 show that the parallel

CHC algorithm is able to obtain increasing improvements

over the makespan results computed using the Min–Min

deterministic heuristics as the size of the faced HCSP

instances grow. When the problem complexity increases,

the evolutionary search in parallel CHC computes accurate

schedules that significantly outperform the Min–Min

makespan results. Up to 23.27% of improvement was

achieved for the largest problem instance studied (dimen-

sion 4;096� 128). Figure 9 summarizes the improvements

obtained using the parallel CHC method.

The previous results show a good scalability behavior of

the proposed parallel CHC algorithm when solving large

inconsistent HCSP instances. Since these scenarios repre-

sent the most generic HC systems, this analysis suggests

that parallel CHC is an efficient scheduler for large

dimension scheduling problems arising in large clusters

and medium-sized grid infrastructures.

6 Conclusions and future work

This work has presented advances on applying sequential

and parallel EAs to the HCSP, a capital problem when exe-

cuting tasks in heterogeneous distributed systems. The pro-

posed EAs were designed for finding accurate results in an

efficient way, using a predefined stopping criterion that

allows a quick planning, and eventually rescheduling of

incoming tasks. Fast parallel versions of GA and CHC were

designed aimed at exploiting both the intrinsic parallel nature

of EAs and the resource availability in distributed computing

environments or in a modern multicore computer. The EAs

were implemented using the MALLBA library, and they

were executed in a high-performance cluster for solving a

de-facto benchmark set with twelve HCSP instances. The

analysis provides a first step to study the accuracy of

Fig. 9 pCHC improvements over Min–Min

Fig. 8 Makespan evolution for CHC algorithms on u_s_lohi.0

Table 9 pCHC improvements over Min–Min

dimension Min–Min Parallel CHC Improvement

(%)
Best Average

512� 16 3,513,919.3 2,952,493.2 2,956,906.0 15.98

1;024� 32 6,367,767.5 5,169,960.5 5,244,046.9 18.81

2;048� 64 3,248,935.5 2,506,258.5 2,546,459.7 22.86

4;096� 128 524,174.1 402,182.1 405,768.5 23.27

Bold values are the best results obtained in each experiment
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sequential and parallel EAs to solve small HCSP instances,

before scaling up to solve larger scenarios.

The analysis of the results allows drawing some con-

clusions on the applicability of EAs to solve the HCSP. The

traditional GA is not well suited to efficiently solve the

HCSP, mainly because its slow fitness evolution conspires

against finding accurate results in short times. CHC is a

more adequate strategy to solve the HCSP when compared

with a traditional GA. The parallel EAs significantly

improved the results of the sequential algorithms, by taking

advantage of their multiple search mechanism and the

diversity provided by the subpopulation model. The

parallel version of CHC obtained accurate schedules in a

low number of generations and improved its best fitness

value faster than the other EAs. It achieved the best results

among the studied EAs, obtaining an overall makespan

improvement of 10.66% with respect to the Min–Min

results, and larger improvements (up to 18.63%) for sce-

narios with high task heterogeneity. The parallel CHC also

improved the previously best-known solutions for six out

of twelve HCSP instances studied. When comparing with

lower bounds computed for the preemptive case, the gaps

were below 3.5% for all instances, suggesting that there is

a small distance between the obtained results and the

optimal makespan value for each instance. The parallel

CHC was able to achieve more than 80% of the ideal

improvement for the studied scenarios.

The parallel algorithms were able to take advantage of

working with small populations to improve the search

efficacy and efficiency by using the available computing

power in a parallel-distributed environment. The parallel

CHC method showed good trade-off values when

considering the solution quality and the execution time

required to compute it. Despite starting from suboptimal

schedules, it was able to find well-suited schedules in a

reasonable short time (i.e. less than 10 s for inconsistent

instances). A primary scalability analysis showed that the

parallel CHC was able to compute accurate schedules for

large inconsistent HCSP instances with high task and

machine heterogeneity. Improvements up to 23.27% over

the Min–Min makespan results were obtained for problem

instances with dimension (tasks 9 machines) 4;096� 128.

From the previous results, we can claim that parallel

CHC is a promising technique to use in large distributed

HC and grid environments, when dealing with tasks having

long execution times. In these scenarios, it is worth to

invest the time required for computing the schedule (i.e.

1 min) in order to achieve significant improvements (over

10%) in the makespan values over traditional heuristics.

Two main lines remains to be tackled as future work,

both already in progress: to improve the efficacy and effi-

ciency of the proposed EAs, and to further study the ability

of parallel EAs to solve large dimension HCSP instances.

Improving the efficacy and efficiency implies studying

additional operators able to provide the required diversity

to avoid that the EAs get stuck when using a large number

of small subpopulations, in order to reduce the execution

times required to compute accurate schedules. In addition,

the proposed methods should be applied to solve a more

comprehensive set of large dimension HCSP instances, that

model large HC and grid environments. By combining

these two lines of future work, a special variant of the

parallel CHC method using a powerful divergency operator

could be enabled to significantly improve the search,

allowing to face large dimension HCSP instances by using

even one single multicore scheduling server.
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